scholarly journals Seasonal and Vertical Variability of Currents Energy in the Sub-Mesoscale Range on the Black Sea Shelf and in Its Central Part

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
O. S. Puzina ◽  
A. A. Kubryakov ◽  
A. I. Mizyuk ◽  
◽  
◽  
...  

Purpose. The study is aimed at investigating seasonal variability and vertical distribution of the sub-mesoscale currents energy (scales L = 1 … 10 km, T = 1 … 10 days) in the deep and shelf zones of the Black Sea. Methods and Results. The study is based on the spectral analysis of the results obtained from the NEMO model numerical calculations performed with high spatial resolution 1 km. The analysis shows that the seasonal variability of the submesoscale energy is significantly different in deep and shelf zones of the basin. At the same time, in both regions, seasonal variation of energy of the sub-mesoscale currents with scales L < 10 rm (Esp) is in good agreement with that of the density fluctuations on the same scales. In the central part of the sea, the high values of Esp are concentrated in the upper mixed layer throughout the whole year. The Esp peak is observed in winter at the depths 0–40 m, which indicates the important role of baroclinic instability induced by the inhomogeneous distribution of the mixed layer depth (MLD) in the generation of sub-mesoscale processes. At the same time, in February in the central part of the northwestern shelf, an absolute minimum of (Esp) is observed. This minimum is caused by the complete mixing and barotropization of the water column. The Esp maximum values are observed in the shelf in September – October. This is related to the intensification of the brackish water transport from the river mouths by mesoscale eddies. In the autumn period high values of Esp in the shelf and deep part of the basin are observed in the deeper layer, compare to summer months .Variability of the Esp vertical distribution coincides to the time variation of MLD. Variability of the submesoscale energy is of a pulsating character with the short-term intensifications and weakenings. Such variability is significantly related to the passing of the mesoscale fronts and the cross-shelf water transport caused by the eddies and upwellings, which lead to the increase of the baroclinic instability. Conclusions. Analysis of the seasonal and vertical variability of the submesoscale currents in the Black Sea deep and shelf zones evidences about the decisive role of the baroclinic instability triggered mainly by the heterogeneity of MLD on their dynamics.

2021 ◽  
Vol 37 (1) ◽  
Author(s):  
O. S. Puzina ◽  
A. A. Kubryakov ◽  
A. I. Mizyuk ◽  
◽  
◽  
...  

Purpose. The study is aimed at investigating seasonal variability and vertical distribution of the submesoscale currents energy (scales L = 1 ... 10 km, T = 1 ... 10 days) in the deep and shelf zones of the Black Sea. Methods and Results. The study is based on the spectral analysis of the results obtained from the NEMO model numerical calculations performed with high spatial resolution 1 km. The analysis shows that in the areas under investigation, seasonal variability of the sub-mesoscale currents energy is significantly different. At that, in both regions, seasonal variation of energy of the sub-mesoscale currents whose scale is less than 10 km (Esp) is in good agreement with that of the density fluctuations on the same scales. In the central part of the sea, the high values of (Esp) are concentrated in the upper mixed layer throughout the whole year. The (Esp) peak is observed in winter at the depths 0–40 m, which indicates the important role of baroclinic instability (induced by the inhomogeneous distribution of the upper mixed layer during this period) in generation of sub-mesoscale processes in the Black Sea. At the same time, in February in the central part of the northwestern shelf, an absolute minimum of (Esp) is observed due to complete mixing and barotropization of the water column. The (Esp) maximum values are noted in September – October, that is related to intensification of the desalinated water cross-shelf transport from the river mouths being affected by the synoptic eddies. At the same time, in the autumn period in this region, the (Esp) high values are observed in the layer, the thickness of which is higher than that in summer (as well as in the central part of the sea). Dynamics of the (Esp) values distribution corresponds to the time variation of the upper mixed layer thickness. Variability of the sub-mesoscale currents energy is of a pulsating character with the short-term intensifications and weakenings. Such variability is significantly related to passing of the synoptic fronts and the cross-shelf water transport being influenced by the eddies and upwellings, which lead to baroclinic instability of waters. Conclusions. Seasonal and vertical variability of the spectral energy in the Black Sea deep and shelf zones testifies in favor of the decisive role of the water baroclinic instability arising due to heterogeneity of the upper mixed layer.


2021 ◽  
pp. 103513
Author(s):  
Dmitrii A. Kremenchutskii ◽  
Gennady F. Batrakov ◽  
Illarion I. Dovhyi ◽  
Yury A. Sapozhnikov

2021 ◽  
Author(s):  
Sergey Piontkovski ◽  
Khalid Al Hashmi ◽  
Yuliya Zagorodnaya ◽  
Irina Serikova ◽  
Vladislav Evstigneev ◽  
...  

&lt;p&gt;Seasonal variability is a powerful component of the spatio-temporal dynamics of plankton communities, especially in the regions with oxygen-depleted waters. The Arabian Sea and the Black Sea are typical representatives of these regions. In both, the dinoflagellate Noctiluca scintillans (Macartney) Kofoid &amp; Swezy, 1921, is one of the abundant plankton species which forms algal blooms. Sampling on coastal stations in the upper mixed layer by the plankton nets with the 120-140 &amp;#181;m mesh size was carried out in 2004-2010. Monthly data were averaged over years. A comparison of seasonal patterns of Noctiluca abundance pointed to the persistence of a bimodal seasonal cycle in both regions. The major peak was observed during spring in the Black Sea and during the winter (Northeast) monsoon in the Arabian Sea. The timing of the second (minor) peak was different over regions as well. This peak was modulated by advection of seasonally fluctuating velocity of coastal currents which transport waters enriched by nutrients by coastal upwelling. The abundance of Noctiluca of the major peak (with the concentration around 1.5*10&lt;sup&gt;6&lt;/sup&gt; cells m&lt;sup&gt;-3&lt;/sup&gt;) was from one to two orders as much high in the western Arabian Sea compared to the northern Black Sea. The remotely sensed chlorophyll-a concentration during the time of the major seasonal peak exhibited a fivefold difference over these regions. In terms of nutrient&lt;sub&gt;&lt;/sub&gt;concentration in the upper mixed layer (in particular, nitrates and silicates), a difference of about one order of magnitude was observed.&lt;/p&gt;


Author(s):  
George Gotsiridze

The work, on the one hand, highlights the mission of Europe, as an importer of knowledge, which has for centuries been the center of gravity for the whole world, and, on the other hand, the role of the Black Sea Region, as an important part of the Great Silk Road, which had also for a long time been promoting the process of rap-prochement and exchange of cultural values between East and West peoples, until it became the ‘inner lake’ of the Ottoman Empire, and today it reverts the function of rapproching and connecting civilizations. The article shows the importance of the Black Sea countries in maintaining overall European stability and in this context the role of historical science. On the backdrop of the ideological confrontation between Georgian historians being inside and outside the Iron Curtain, which began with the foundation of the Soviet Union, the research sheds light on the merit of the Georgian scholars-in-exile for both popularization of the Georgian culture and science in Eu-rope and for importing advanced (European) scientific knowledge to Georgia. Ex-change of knowledge in science and culture between the Black Sea region and Europe will enrich and complete each other through impact and each of them will have unique, inimitative features.


2005 ◽  
Vol 35 (1) ◽  
pp. 13-32 ◽  
Author(s):  
A. Birol Kara ◽  
Alan J. Wallcraft ◽  
Harley E. Hurlburt

Abstract A 1/25° × 1/25° cos(lat) (longitude × latitude) (≈3.2-km resolution) eddy-resolving Hybrid Coordinate Ocean Model (HYCOM) is introduced for the Black Sea and used to examine the effects of ocean turbidity on upper-ocean circulation features including sea surface height and mixed layer depth (MLD) on annual mean climatological time scales. The model is a primitive equation model with a K-profile parameterization (KPP) mixed layer submodel. It uses a hybrid vertical coordinate that combines the advantages of isopycnal, σ, and z-level coordinates in optimally simulating coastal and open-ocean circulation features. This model approach is applied to the Black Sea for the first time. HYCOM uses a newly developed time-varying solar penetration scheme that treats attenuation as a continuous quantity. This scheme includes two bands of solar radiation penetration, one that is needed in the top 10 m of the water column and another that penetrates to greater depths depending on the turbidity. Thus, it is suitable for any ocean general circulation model that has fine vertical resolution near the surface. With this scheme, the optical depth–dependent attenuation of subsurface heating in HYCOM is given by monthly mean fields for the attenuation of photosynthetically active radiation (kPAR) during 1997–2001. These satellite-based climatological kPAR fields are derived from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) data for the spectral diffuse attenuation coefficient at 490 nm (k490) and have been processed to have the smoothly varying and continuous coverage necessary for use in the Black Sea model applications. HYCOM simulations are driven by two sets of high-frequency climatological forcing, but no assimilation of ocean data is then used to demonstrate the importance of including spatial and temporal varying attenuation depths for the annual mean prediction of upper-ocean quantities in the Black Sea, which is very turbid (kPAR &gt; 0.15 m−1, in general). Results are reported from three model simulations driven by each atmospheric forcing set using different values for the kPAR. A constant solar-attenuation optical depth of ≈17 m (clear water assumption), as opposed to using spatially and temporally varying attenuation depths, changes the surface circulation, especially in the eastern Black Sea. Unrealistic sub–mixed layer heating in the former results in weaker stratification at the base of the mixed layer and a deeper MLD than observed. As a result, the deep MLD off Sinop (at around 42.5°N, 35.5°E) weakens the surface currents regardless of the atmospheric forcing used in the model simulations. Using the SeaWiFS-based monthly turbidity climatology gives a shallower MLD with much stronger stratification at the base and much better agreement with observations. Because of the high Black Sea turbidity, the simulation with all solar radiation absorbed at the surface case gives results similar to the simulations using turbidity from SeaWiFS in the annual means, the aspect of the results investigated in this paper.


2016 ◽  
Vol 1 (4) ◽  
pp. 76-77
Author(s):  
I. P. Bondarev

Systematic monitoring of ecologically significant species – predatory mollusc Rapana venosa Valenciennes, 1846 populations – is an important part of the Black Sea monitoring. The study of the role of R. venosa in contemporary marine ecosystem is of considerable interest. In June-September 2015-2016 the study of consorting relations of rapana was conducted in situ with a parallel sampling by diver. In the course of research new information about the interaction of R. venosa with the fish fauna has been obtained. Of particular importance for fishes is the presence of rapana in the sandy bottom zone, where there are no natural shelters, and food resources are limited. The most important for the fish is the presence on the rapana shells of algal fouling and epiphyton. The shells of invader – R. venosa – and its fouling create additional opportunities for the survival of some fish fauna representatives juveniles of the Black Sea. The data obtained extend the concepts of ecological role of mollusc – invader R. venosa, as well as the ecology and ethology of several fish species.


Sign in / Sign up

Export Citation Format

Share Document