Control of Residual Stresses Using Narrow Gap Technique in SMA Welding of Structural Steel

2003 ◽  
Vol 36 (1) ◽  
pp. 9
Author(s):  
P. K. Ghosh ◽  
Pawan Kumar Arora
2018 ◽  
Vol 256 ◽  
pp. 239-246 ◽  
Author(s):  
Chuan Liu ◽  
Jiawei Yang ◽  
Yifeng Shi ◽  
Qiang Fu ◽  
Yong Zhao

2016 ◽  
Vol 869 ◽  
pp. 567-571 ◽  
Author(s):  
Sandro Rosa Correa ◽  
Marcos Flavio de Campos ◽  
C.J. Marcelo ◽  
José Adilson de Castro ◽  
Maria Cindra Fonseca ◽  
...  

The use of structural steel in the industry is increasing every day, and the study of stress state after welding has been shown to be of great importance. Nondestructive techniques become quite appropriate to be performed before and during the service component of welded, and thus ensure its integrity. The magnetic technique to be nondestructive, and easy to apply in the field, has potential to be an inspection tool for measuring residual stresses and other microstructural parameters. In this work it was possible to analyze the state of residual stresses through nondestructive techniques, Magnetic Barkhausen Noise and X-ray Diffraction, as well as the semi-destructive technique, high speed hole drilling method, and thereby determine the residual stresses in ASTM A36 steel plate welded by MAG (Metal Active Gas) process.


2011 ◽  
Vol 689 ◽  
pp. 296-301 ◽  
Author(s):  
Muhammad Anis ◽  
Winarto

Residual stresses are generated as a result of non-uniform temperature distribution during welding and particularly cooling process during fabrication of the welded parts. Residual stresses have a major effect on the overall performance of a component in service. In this instant, the residual stress in the form of angular distortion is primarily caused by shrinkage on longitudinal and transversal direction. Several single v-butt joints on structural steel plates of SS400 are investigated by using different plate thickness and welding positions (1G and 3G). GMAW method was used in the welding process. Measurement of residual stress was carried out on a plate with the thickness of 16 mm on longitudinal, transversal and normal direction by using neutron diffraction method. Results showed that the angular distortion of the welded plates increase with the increase of plate thickness. Welding by vertical position (3G position) resulted in a bigger angular distortion compared to flat position (1G position). The distribution of residual stress varied between tension and compression residual stress along welded area with the range of -10 mm to 10 mm. Measurement of residual stress on the longitudinal direction has the greatest value among two other directions.


2010 ◽  
Vol 452-453 ◽  
pp. 41-44 ◽  
Author(s):  
Belen Moreno ◽  
Pablo Lopez-Crespo ◽  
Antonio González-Herrera ◽  
Jose Zapatero

Many mechanical components are subjected to multiaxial fatigue. These conditions are typically coming from external loads, the geometry of the component and/or residual stresses. However the majority of experimental data available in the literature are focused on the simpler uni-axial fatigue problem. The present work describes a series of experimental tests conducted to characterise in a comprehensive way the multiaxial behaviour of a ST52-3N structural steel. First, the monotonic properties of the steel were obtained experimentally. Then cyclic properties were also measured both in the longitudinal and torsional axes. Finally another series of tests were carried out to study the multiaxial response of the material. Both in-phase (proportional) and out-of-phase (non proportional) loadings were employed, thus providing a complete database for improving current models which describe the multiaxial behaviour of materials.


Author(s):  
Sayantan Das Banik ◽  
Suranjit Kumar ◽  
Pawan Kumar Singh ◽  
Sujay Bhattacharya ◽  
Manas Mohan Mahapatra

2018 ◽  
Vol 5 (1) ◽  
pp. 016526 ◽  
Author(s):  
Chuan Liu ◽  
Jiawei Yang ◽  
Yifeng Shi ◽  
Yong Zhao

Author(s):  
Fausto Fusari ◽  
Paolo Marangoni ◽  
Michele Musti ◽  
Stefano Alberini

The standard practice recommended for high pressure vessels, having heavy walls, requires the implementation of weld joint preparation with narrow gap technique; this generally calls for a ‘two beads per layer’ sequence alongside the use of the submerged arc welding process. This process provides a high quality and uniformed weld joint whilst also reducing the residual stresses after welding. In refinery equipment that are subjected to high pressures and are exposed to hydrogen environment, high strength materials such as 2 1/4 Cr 1 Mo 1/4 V are commonly used. A recent study conducted on this material, and the process of submerged arc welding with narrow gap technique ‘two beads per layer,’ had identified a potential issue in complying with ASME Code specified creep resistance properties. In another setting, with regards to the properties of toughness in weld joints, other possible inconsistencies, in the narrow gap weld joint, between the weld centerline and center bead, were found. In order to overcome the deficiencies stated above, an innovative welding technology is presented in this paper which is based on the preparation of a narrower groove than the commonly used narrow gap technique. Such groove has been designed to implement the ‘single bead per layer’ approach. This paper illustrates that the use of this new technique results in improved quality of weld seams as applied in heavy wall high pressure vessels used in creep regime. The welding process considered is that of tandem submerged arc welding with two wires. The mechanical characteristics and results obtained by comparing the two techniques ‘two beads per layer’, and the new innovative one ‘single bead per layer’ will be evidenced and discussed.


Sign in / Sign up

Export Citation Format

Share Document