scholarly journals A New Tool for the Action Potential Repolarization Dynamic Analysis: Application to the Discrimination of Diabetic and Control Cells

Author(s):  
Olivier Meste ◽  
Marianna Meo ◽  
Sergio Signore ◽  
Marcello Rota
2011 ◽  
Vol 300 (2) ◽  
pp. H565-H573 ◽  
Author(s):  
Masahide Harada ◽  
Yukiomi Tsuji ◽  
Yuko S. Ishiguro ◽  
Hiroki Takanari ◽  
Yusuke Okuno ◽  
...  

Congestive heart failure (CHF) predisposes to ventricular fibrillation (VF) in association with electrical remodeling of the ventricle. However, much remains unknown about the rate-dependent electrophysiological properties in a failing heart. Action potential properties in the left ventricular subepicardial muscles during dynamic pacing were examined with optical mapping in pacing-induced CHF ( n = 18) and control ( n = 17) rabbit hearts perfused in vitro. Action potential durations (APDs) in CHF were significantly longer than those observed for controls at basic cycle lengths (BCLs) >1,000 ms but significantly shorter at BCLs <400 ms. Spatial APD dispersions were significantly increased in CHF versus control (by 17–81%), and conduction velocity was significantly decreased in CHF (by 6–20%). In both groups, high-frequency stimulation (BCLs <150 ms) always caused spatial APD alternans; spatially concordant alternans and spatially discordant alternans (SDA) were induced at 60% and 40% in control, respectively, whereas 18% and 82% in CHF. SDA in CHF caused wavebreaks followed by reentrant excitations, giving rise to VF. Incidence of ventricular tachycardia/VFs elicited by high-frequency dynamic pacing (BCLs <150 ms) was significantly higher in CHF versus control (93% vs. 20%). In CHF, left ventricular subepicardial muscles show significant APD shortenings at short BCLs favoring reentry formations following wavebreaks in association with SDA. High-frequency excitation itself may increase the vulnerability to VF in CHF.


2015 ◽  
Vol 764-765 ◽  
pp. 757-761 ◽  
Author(s):  
Yunn Lin Hwang ◽  
Jung Kuang Cheng ◽  
Van Thuan Truong

This paper presents simulation of multibody manufacturing systems with the support of numerical tools. The dynamic and cybernetic characteristics of driving system are discussed. Simple prototype models of robot arm and machine tool’s driving system are quickly established in Computer Aided Design (CAD) software inwhich the whole specification of material, inertia and so on are involved. The prototypes therefore are simulated in RecurDyn- a Computer Aided Engineering (CAE) software. The models are driven by controllers built in Matlab/Simulink via co-simulation. The results are suitable with theory and able to exploied for expansion of complexly effective factors. The research indicates that dynamic analysis and control could be done via numerical method instead of directly dynamic equation creation for multibody manufacturing systems.


2012 ◽  
Vol 184-185 ◽  
pp. 1521-1525
Author(s):  
Yu En Wu ◽  
Yu Hui Hu ◽  
Ya Ying Jin ◽  
Jun Qiang Xi

A CAN-Bus protocol analysis and verification method with three key aspects which are static analysis, dynamic analysis and verification &control is put forward. Static analysis ascertains the communication information of each node by bus residual method; Synchronous contrast method is put in use to obtain practical and effective control protocol in the dynamic analysis; Verification &control is to verify the correctness of the analytical protocol and to achieve the control of the critical subsystems by bus gateway system. This scheme has been used to analyze a foreign parallel hybrid powertrain system, and it proves the correctness of the designed static analysis and dynamic analysis, the applicability of verification &control.


2009 ◽  
Author(s):  
Hanxu Sun ◽  
Yili Zheng ◽  
Qingxuan Jia ◽  
Chengkun Shi

2010 ◽  
Vol 299 (1) ◽  
pp. C74-C86 ◽  
Author(s):  
Sindura B. Ganapathi ◽  
Todd E. Fox ◽  
Mark Kester ◽  
Keith S. Elmslie

Human ether-à-go-go-related gene (HERG) potassium channels play an important role in cardiac action potential repolarization, and HERG dysfunction can cause cardiac arrhythmias. However, recent evidence suggests a role for HERG in the proliferation and progression of multiple types of cancers, making it an attractive target for cancer therapy. Ceramide is an important second messenger of the sphingolipid family, which due to its proapoptotic properties has shown promising results in animal models as an anticancer agent . Yet the acute effects of ceramide on HERG potassium channels are not known. In the present study we examined the effects of cell-permeable C6-ceramide on HERG potassium channels stably expressed in HEK-293 cells. C6-ceramide (10 μM) reversibly inhibited HERG channel current (IHERG) by 36 ± 5%. Kinetically, ceramide induced a significant hyperpolarizing shift in the current-voltage relationship (Δ V1/2 = −8 ± 0.5 mV) and increased the deactivation rate (43 ± 3% for τfast and 51 ± 3% for τslow). Mechanistically, ceramide recruited HERG channels within caveolin-enriched lipid rafts. Cholesterol depletion and repletion experiments and mathematical modeling studies confirmed that inhibition and gating effects are mediated by separate mechanisms. The ceramide-induced hyperpolarizing gating shift (raft mediated) could offset the impact of inhibition (raft independent) during cardiac action potential repolarization, so together they may nullify any negative impact on cardiac rhythm. Our results provide new insights into the effects of C6-ceramide on HERG channels and suggest that C6-ceramide can be a promising therapeutic for cancers that overexpress HERG.


Sign in / Sign up

Export Citation Format

Share Document