scholarly journals Editorial: Past ice sheet dynamics and sea level—placing the future in context

PAGES news ◽  
2009 ◽  
Vol 17 (2) ◽  
pp. 51-52 ◽  
Author(s):  
Mark Siddall ◽  
William G Thompson ◽  
Claire Waelbroeck
2020 ◽  
Author(s):  
Surendra Adhikari ◽  
Erik R. Ivins ◽  
Eric Larour ◽  
Lambert Caron ◽  
Helene Seroussi

Abstract. Polar ice sheets are important components of any Earth System model. As the domains of land, ocean, and ice sheet change, they must be consistently defined within the lexicon of geodesy. Understanding the interplay between the processes such as ice sheet dynamics, solid Earth deformation, and sea level adjustment requires both consistent and mass conserving descriptions of evolving land and ocean domains, grounded and floating ice masks, coastlines and grounding lines, and bedrock and geoid height as viewed from space. Here we present a geometric description of an evolving ice sheet margin and its relations to sea level change, the position and loading of the solid Earth and include the ice shelves and adjacent ocean mass. We generalize the formulation so that it is applied to arbitrarily distributed ice, bedrock and adjacent ocean, and their interactive evolution. The formalism simplifies computational strategies that seek to conserve mass in Earth System models.


2016 ◽  
Vol 12 (12) ◽  
pp. 2195-2213 ◽  
Author(s):  
Heiko Goelzer ◽  
Philippe Huybrechts ◽  
Marie-France Loutre ◽  
Thierry Fichefet

Abstract. As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG,  ∼  130 to 115 kyr BP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial climate, ice sheet, and sea-level evolution with the Earth system model of intermediate complexity LOVECLIM v.1.3, which includes dynamic and fully coupled components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. In this setup, sea-level evolution and climate–ice sheet interactions are modelled in a consistent framework.Surface mass balance change governed by changes in surface meltwater runoff is the dominant forcing for the Greenland ice sheet, which shows a peak sea-level contribution of 1.4 m at 123 kyr BP in the reference experiment. Our results indicate that ice sheet–climate feedbacks play an important role to amplify climate and sea-level changes in the Northern Hemisphere. The sensitivity of the Greenland ice sheet to surface temperature changes considerably increases when interactive albedo changes are considered. Southern Hemisphere polar and sub-polar ocean warming is limited throughout the Last Interglacial, and surface and sub-shelf melting exerts only a minor control on the Antarctic sea-level contribution with a peak of 4.4 m at 125 kyr BP. Retreat of the Antarctic ice sheet at the onset of the LIG is mainly forced by rising sea level and to a lesser extent by reduced ice shelf viscosity as the surface temperature increases. Global sea level shows a peak of 5.3 m at 124.5 kyr BP, which includes a minor contribution of 0.35 m from oceanic thermal expansion. Neither the individual contributions nor the total modelled sea-level stand show fast multi-millennial timescale variations as indicated by some reconstructions.


2014 ◽  
Vol 7 (1) ◽  
pp. 129-148 ◽  
Author(s):  
K. Lindbäck ◽  
R. Pettersson ◽  
S. H. Doyle ◽  
C. Helanow ◽  
P. Jansson ◽  
...  

Abstract. We present ice thickness and bed topography maps with high spatial resolution (250 to 500 m) of a and-terminating section of the Greenland Ice Sheet derived from combined ground-based and airborne radar surveys. The data have a total area of ~12000 km2 and cover the whole ablation area of the outlet glaciers of Isunnguata Sermia, Russell, Leverett, Ørkendalen and Isorlersuup up to the long-term mass balance equilibrium line altitude at ~1600 m above sea level. The bed topography shows highly variable subglacial trough systems, and the trough of the Isunnguata Sermia Glacier is over-deepened and reaches an elevation of several hundreds of meters below sea level. The ice surface is smooth and only reflects the bedrock topography in a subtle way, resulting in a highly variable ice thickness. The southern part of our study area consists of higher bed elevations compared to the northern part. The covered area is one of the most studied regions of the Greenland Ice Sheet with studies of mass balance, dynamics, and supraglacial lakes, and our combined dataset can be valuable for detailed studies of ice sheet dynamics and hydrology. The compiled datasets of ground-based and airborne radar surveys are accessible for reviewers (password protected) at doi.pangaea.de/10.1594/pangaea.830314 and will be freely available in the final revised paper.


2012 ◽  
Author(s):  
T James ◽  
K Simon ◽  
A Darlington

2018 ◽  
pp. 469-475
Author(s):  
Philip L. Gibbard ◽  
Jane E. Rawson ◽  
Alan G. Smith

Science ◽  
2002 ◽  
Vol 295 (5564) ◽  
pp. 2376-2377 ◽  
Author(s):  
R. Sabadini

2013 ◽  
Vol 54 (63) ◽  
pp. 209-220 ◽  
Author(s):  
Ralf Greve ◽  
Ute C. Herzfeld

AbstractThe dynamic/thermodynamic shallow-ice model SICOPOLIS is applied to the Greenland ice sheet. Paleoclimatic spin-ups from 125 ka BP until today, as well as future-climate experiments 500 years into the future, are carried out with three different grid spacings, namely 20, 10 and 5 km. The scenarios are a subset of those specified by the SeaRISE (Sea-level Response to Ice Sheet Evolution) community effort. The bed topography includes improved troughs for Jakobshavn Isbræ, Helheim, Kangerdlugssuaq and Petermann glaciers, processed by an algorithm that preserves shape, orientation and continuity of the troughs on the 5 km scale. Comparison of simulated and observed present-day surface velocities shows that these ice streams and outlet glaciers are resolved with different accuracies, ranging from poor (20 km grid) to reasonably good (5 km grid). In the future-climate experiments, the simulated absolute ice volumes depend significantly on the resolution, while the sensitivities (ice volumes relative to the constant-climate control run) vary only by a few centimeters of sea-level equivalent.


2011 ◽  
Vol 108 (22) ◽  
pp. 8978-8983 ◽  
Author(s):  
S. F. Price ◽  
A. J. Payne ◽  
I. M. Howat ◽  
B. E. Smith

2012 ◽  
Vol 58 (209) ◽  
pp. 427-440 ◽  
Author(s):  
Hakime Seddik ◽  
Ralf Greve ◽  
Thomas Zwinger ◽  
Fabien Gillet-Chaulet ◽  
Olivier Gagliardini

AbstractIt is likely that climate change will have a significant impact on the mass balance of the Greenland ice sheet, contributing to future sea-level rise. Here we present the implementation of the full Stokes model Elmer/Ice for the Greenland ice sheet, which includes a mesh refinement technique in order to resolve fast-flowing ice streams and outlet glaciers. We discuss simulations 100 years into the future, forced by scenarios defined by the SeaRISE (Sea-level Response to Ice Sheet Evolution) community effort. For comparison, the same experiments are also run with the shallow-ice model SICOPOLIS (SImulation COde for POLythermal Ice Sheets). We find that Elmer/Ice is ~43% more sensitive (exhibits a larger loss of ice-sheet volume relative to the control run) than SICOPOLIS for the ice-dynamic scenario (doubled basal sliding), but ~61 % less sensitive for the direct global warming scenario (based on the A1 B moderate-emission scenario for greenhouse gases). The scenario with combined A1B global warming and doubled basal sliding forcing produces a Greenland contribution to sea-level rise of ~15cm for Elmer/Ice and ~12cm for SICOPOLIS over the next 100 years.


2017 ◽  
Vol 5 (2) ◽  
pp. 21 ◽  
Author(s):  
Aimée Slangen ◽  
Roderik van de Wal ◽  
Thomas Reerink ◽  
Renske de Winter ◽  
John Hunter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document