scholarly journals A Comparison of National Water Model Retrospective Analysis Snow Outputs at SNOTEL Sites Across the Western U.S.

Author(s):  
Irene Garousi-Nejad ◽  
David Tarboton

This study compares the U.S. National Water Model (NWM) reanalysis snow outputs to observed snow water equivalent (SWE) and snow-covered area fraction (SCAF) at SNOTEL sites across the Western U.S. SWE was obtained from SNOTEL sites, while SCAF was obtained from MODIS observations at a nominal 500 m grid scale. Retrospective NWM results were at a 1000 m grid scale. We compared results for SNOTEL sites to gridded NWM and MODIS outputs for the grid cells encompassing each SNOTEL site. Differences between modeled and observed SWE were attributed to both model errors, as well as errors in inputs, notably precipitation and temperature. The NWM generally under-predicted SWE, partly due to precipitation input differences. There was also a slight general bias for model input temperature to be cooler than observed, counter to the direction expected to lead to under-modeling of SWE. There was also under-modeling of SWE for a subset of sites where precipitation inputs were good. Furthermore, the NWM generally tends to melt snow early. There was considerable variability between modeled and observed SCAF as well as the binary comparison of snow cover presence that hampered useful interpretation of SCAF comparisons. This is in part due to the shortcomings associated with both model SCAF parameterization and MODIS observations, particularly in vegetated regions. However, when SCAF was aggregated across all sites and years, modeled SCAF tended to be more than observed using MODIS. These differences are regional with generally better SWE and SCAF results in the Central Basin and Range and differences tending to become larger the further away regions are from this region. These findings identify areas where predictions from the NWM involving snow may be better or worse, and suggest opportunities for research directed towards model improvements.

Author(s):  
Irene Garousi-Nejad ◽  
David Tarboton

This study compares the U.S. National Water Model (NWM) reanalysis snow outputs to observed snow water equivalent (SWE) and snow-covered area fraction (SCAF) at SNOTEL sites across the Western U.S. This was done to evaluate and identify opportunities for improving the modeling of snow in the NWM. SWE was obtained from SNOTEL sites, while SCAF was obtained from MODIS observations at a nominal 500 m grid scale. Retrospective NWM results were at a 1000 m grid scale. We compared results for SNOTEL sites to gridded NWM and MODIS outputs for the grid cells encompassing each SNOTEL site. Differences between modeled and observed SWE were attributed to both model errors, as well as errors in inputs, notably precipitation and temperature. The NWM generally under-predicted SWE, partly due to precipitation input differences. There was also a slight general bias for model input temperature to be cooler than observed, counter to the direction expected to lead to under-modeling of SWE. There was also under-modeling of SWE for a subset of sites where precipitation inputs were good. Furthermore, the NWM generally tends to melt snow early. There was considerable variability between modeled and observed SCAF that hampered useful interpretation of these comparisons. This is in part due to the model grid SCAF essentially being binary (snow or no snow) while observations from MODIS are much more fractional. However, when SCAF was aggregated across all sites and years, modeled SCAF tended to be more than observed using MODIS. These differences are regional with generally better SWE and SCAF results in the Central Basin and Range and differences tending to become larger the further away regions are from this region. These findings identify areas where predictions from the NWM involving snow may be better or worse, and suggest opportunities for research directed towards model improvements.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 890
Author(s):  
Mohamed Wassim Baba ◽  
Abdelghani Boudhar ◽  
Simon Gascoin ◽  
Lahoucine Hanich ◽  
Ahmed Marchane ◽  
...  

Melt water runoff from seasonal snow in the High Atlas range is an essential water resource in Morocco. However, there are only few meteorological stations in the high elevation areas and therefore it is challenging to estimate the distribution of snow water equivalent (SWE) based only on in situ measurements. In this work we assessed the performance of ERA5 and MERRA-2 climate reanalysis to compute the spatial distribution of SWE in the High Atlas. We forced a distributed snowpack evolution model (SnowModel) with downscaled ERA5 and MERRA-2 data at 200 m spatial resolution. The model was run over the period 1981 to 2019 (37 water years). Model outputs were assessed using observations of river discharge, snow height and MODIS snow-covered area. The results show a good performance for both MERRA-2 and ERA5 in terms of reproducing the snowpack state for the majority of water years, with a lower bias using ERA5 forcing.


1987 ◽  
Vol 9 ◽  
pp. 39-44 ◽  
Author(s):  
A.T.C. Chang ◽  
J.L. Foster ◽  
D.K. Hall

Snow covers about 40 million km2of the land area of the Northern Hemisphere during the winter season. The accumulation and depletion of snow is dynamically coupled with global hydrological and climatological processes. Snow covered area and snow water equivalent are two essential measurements. Snow cover maps are produced routinely by the National Environmental Satellite Data and Information Service of the National Oceanic and Atmospheric Administration (NOAA/NESDIS) and by the US Air Force Global Weather Center (USAFGWC). The snow covered area reported by these two groups sometimes differs by several million km2, Preliminary analysis is performed to evaluate the accuracy of these products.Microwave radiation penetrating through clouds and snowpacks could provide depth and water equivalent information about snow fields. Based on theoretical calculations, snow covered area and snow water equivalent retrieval algorithms have been developed. Snow cover maps for the Northern Hemisphere have been derived from Nimbus-7 SMMR data for a period of six years (1978–1984). Intercomparisons of SMMR, NOAA/NESDIS and USAFGWC snow maps have been conducted to evaluate and assess the accuracy of SMMR derived snow maps. The total snow covered area derived from SMMR is usually about 10% less than the other two products. This is because passive microwave sensors cannot detect shallow, dry snow which is less than 5 cm in depth. The major geographic regions in which the differences among these three products are the greatest are in central Asia and western China. Future study is required to determine the absolute accuracy of each product.Preliminary snow water equivalent maps have also been produced. Comparisons are made between retrieved snow water equivalent over large area and available snow depth measurements. The results of the comparisons are good for uniform snow covered areas, such as the Canadian high plains and the Russian steppes. Heavily forested and mountainous areas tend to mask out the microwave snow signatures and thus comparisons with measured water equivalent are poorer in those areas.


1987 ◽  
Vol 9 ◽  
pp. 39-44 ◽  
Author(s):  
A.T.C. Chang ◽  
J.L. Foster ◽  
D.K. Hall

Snow covers about 40 million km2 of the land area of the Northern Hemisphere during the winter season. The accumulation and depletion of snow is dynamically coupled with global hydrological and climatological processes. Snow covered area and snow water equivalent are two essential measurements. Snow cover maps are produced routinely by the National Environmental Satellite Data and Information Service of the National Oceanic and Atmospheric Administration (NOAA/NESDIS) and by the US Air Force Global Weather Center (USAFGWC). The snow covered area reported by these two groups sometimes differs by several million km2, Preliminary analysis is performed to evaluate the accuracy of these products.Microwave radiation penetrating through clouds and snowpacks could provide depth and water equivalent information about snow fields. Based on theoretical calculations, snow covered area and snow water equivalent retrieval algorithms have been developed. Snow cover maps for the Northern Hemisphere have been derived from Nimbus-7 SMMR data for a period of six years (1978–1984). Intercomparisons of SMMR, NOAA/NESDIS and USAFGWC snow maps have been conducted to evaluate and assess the accuracy of SMMR derived snow maps. The total snow covered area derived from SMMR is usually about 10% less than the other two products. This is because passive microwave sensors cannot detect shallow, dry snow which is less than 5 cm in depth. The major geographic regions in which the differences among these three products are the greatest are in central Asia and western China. Future study is required to determine the absolute accuracy of each product.Preliminary snow water equivalent maps have also been produced. Comparisons are made between retrieved snow water equivalent over large area and available snow depth measurements. The results of the comparisons are good for uniform snow covered areas, such as the Canadian high plains and the Russian steppes. Heavily forested and mountainous areas tend to mask out the microwave snow signatures and thus comparisons with measured water equivalent are poorer in those areas.


2013 ◽  
Vol 54 (62) ◽  
pp. 305-313 ◽  
Author(s):  
T. Skaugen ◽  
F. Randen

AbstractA good estimate of the spatial probability density function (PDF) of snow water equivalent (SWE) provides the mean of the snow reservoir, but also enables modelling of the changes in snow-covered area (SCA), which is crucial for the runoff dynamics in spring. The spatial PDF of accumulated SWE is here modelled as a sum of correlated gamma-distributed variables, called units. The spatial variance of accumulated SWE is evaluated by the covariance matrix of the units. For accumulation events, there are only positive elements in the covariance matrix, whereas for melting events there are both positive and negative elements. The negative elements dictate that the correlation between melt and SWE is negative. After accumulation and melting events, the changes in the spatial moments are weighted by changes in SCA. Results from the model are in good agreement with observed spatial moments of SWE and SCA and found to provide better estimates of the spatial variability than the current model for snow distribution used in the Norwegian version of the Swedish rainfall–runoff model HBV. The parameters in the distribution model are estimated from observed historical precipitation, so no calibration parameters are introduced.


2009 ◽  
Vol 10 (1) ◽  
pp. 130-148 ◽  
Author(s):  
Benjamin F. Zaitchik ◽  
Matthew Rodell

Abstract Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow-covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the assimilation of SCA observations is complicated by an information deficit in the observation—SCA indicates only the presence or absence of snow, not snow water equivalent—and by the fact that assimilated SCA observations can introduce inconsistencies with atmospheric forcing data, leading to nonphysical artifacts in the local water balance. In this paper, a novel assimilation algorithm is presented that introduces Moderate Resolution Imaging Spectroradiometer (MODIS) SCA observations to the Noah LSM in global, uncoupled simulations. The algorithm uses observations from up to 72 h ahead of the model simulation to correct against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is accomplished by using future snow observations to adjust air temperature and, when necessary, precipitation within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and energy fluxes during the snow season and, in some regions, on into the following spring.


2016 ◽  
Vol 17 (4) ◽  
pp. 1203-1221 ◽  
Author(s):  
Steven A. Margulis ◽  
Gonzalo Cortés ◽  
Manuela Girotto ◽  
Michael Durand

Abstract A newly developed state-of-the-art snow water equivalent (SWE) reanalysis dataset over the Sierra Nevada (United States) based on the assimilation of remotely sensed fractional snow-covered area data over the Landsat 5–8 record (1985–2015) is presented. The method (fully Bayesian), resolution (daily and 90 m), temporal extent (31 years), and accuracy provide a unique dataset for investigating snow processes. The verified dataset (based on a comparison with over 9000 station years of in situ data) exhibited mean and root-mean-square errors less than 3 and 13 cm, respectively, and correlation greater than 0.95 compared with in situ SWE observations. The reanalysis dataset was used to characterize the peak SWE climatology to provide a basic accounting of the stored snowpack water in the Sierra Nevada over the last 31 years. The pixel-wise peak SWE volume over the domain was found to be 20.0 km3 on average with a range of 4.0–40.6 km3. The ongoing drought in California contains the two lowest snowpack years (water years 2014 and 2015) and three of the four driest years over the examined record. It was found that the basin-average peak SWE, while underestimating the total water storage in snowpack over the year, accurately captures the interannual variability in stored snowpack water. However, the results showed that the assumption that 1 April SWE is representative of the peak SWE can lead to significant underestimation of basin-average peak SWE both on an average (21% across all basins) and on an interannual basis (up to 98% across all basin years).


1993 ◽  
Vol 18 ◽  
pp. 179-184
Author(s):  
Tsutomu Nakamura ◽  
Osamu Abe

The average amounts of seasonal snow cover and snowfall in Japan were calculated as 7.9 × 1013kg and 1.2 × 1014kg, respectively. The mass of seasonal snow cover of a heavy-snowfall winter, 1980–81 (56-Gosetsu), was calculated as 1.3 × 1014kg. The amount of 7.9 × 1013kg was converted to water equivalent of 230 mm on the whole snow-covered area, including snow-prone area. A mean of 370 mm in snow water equivalent was calculated for the snow area where mean snow depth on the ground was more than 10 cm.


2016 ◽  
Author(s):  
Thomas Skaugen ◽  
Ingunn H. Weltzien

Abstract. Snow is an important and complicated element in hydrological modelling. The traditional catchment hydrological model with its many free calibration parameters, also in snow sub-models, is not a well-suited tool for predicting conditions for which it has not been calibrated. Such conditions include prediction in ungauged basins and assessing hydrological effects of climate change. In this study, a new model for the spatial distribution of snow water equivalent (SWE), parameterized solely from observed spatial variability of precipitation (SD_G), is compared with the current snow distribution model used in the operational flood forecasting models in Norway. The latter model (SD_LN) has a fixed, calibrated coefficient of variation, which parameterizes a log-normal model for snow distribution. The two models are implemented in the already parameter parsimonious rainfall runoff model Distance Distribution Dynamics (DDD) and their capability for predicting runoff, SWE and snow covered area (SCA) are tested and compared for 71 Norwegian catchments. Results show that SD_G better simulates SCA when compared with MODIS satellite derived snow cover. In addition, SWE is simulated more realistically in that seasonal snow is melted out and the building up of "snow towers" and giving spurious positive trends in SWE, typical for SD_LN, is prevented. The precision of runoff simulations using SD_G is slightly inferior, with a reduction in Nash-Sutcliffe and Kling Gupta Criterion of 0.01, but it is shown that high precision in runoff prediction using SD_LN is accompanied with erroneous simulations of SWE.


1993 ◽  
Vol 18 ◽  
pp. 179-184
Author(s):  
Tsutomu Nakamura ◽  
Osamu Abe

The average amounts of seasonal snow cover and snowfall in Japan were calculated as 7.9 × 1013kg and 1.2 × 1014kg, respectively. The mass of seasonal snow cover of a heavy-snowfall winter, 1980–81 (56-Gosetsu), was calculated as 1.3 × 1014kg. The amount of 7.9 × 1013kg was converted to water equivalent of 230 mm on the whole snow-covered area, including snow-prone area. A mean of 370 mm in snow water equivalent was calculated for the snow area where mean snow depth on the ground was more than 10 cm.


Sign in / Sign up

Export Citation Format

Share Document