scholarly journals Evaluation and Comparison of the GWR Merged Precipitation and Multi-Source Weighted-Ensemble Precipitation based on High-density Gauge Measurement.

Author(s):  
Jing Zhao ◽  
Yuan Qiqi ◽  
Long Yang ◽  
Hao Wu ◽  
lachun Wang

Accurate estimation of precipitation in both space and time is essential for hydrological research. We compared multi-source weighted ensemble precipitation (MSWEP) with multi-source fused satellite precipitation (CHIRPS) based on high-density rain gauge precipitation observations in the Taihu Lake basin. We proposed a new merge precipitation algorithm GWRMP based on the geographically weighted regression (GWR) method. GWRMP corrects the bias of MSWEP by using high-density rain gauge precipitation to address the common problem of daily precipitation underestimation in MSWEP. The large-scale spatial coverage of the water surface in this region leads to the uneven distribution of rain gauges on the lake. There are differences in the descriptive ability of the three spatial precipitation types, MSWEP, GWRMP, and IDW, for spatial and temporal precipitation information in the Taihu Lake basin. A comparison shows that GWRMP has a significant advantage in obtaining the spatial and temporal variability of precipitation in areas with complex topographic conditions. GWRMP compensates the problem of underestimation of precipitation by MSWEP (10% to 25%), and avoids the risk of the high dependence of IDW on rain gauges, and improves the accuracy of spatial and temporal precipitation in large lake areas with sparse distribution of rain gauges (Pbias limited to 10%). GWRMP improved the estimation for different rainfall intensities in the Taihu Lake basin, especially in the mid-level rainfall and above precipitation frequencies. Compared with IDW and MSWEP, GWRMP is more suitable for intense precipitation monitoring and storm flood frequency study in the basin. Therefore, GWRMP is a better choice for spatial and temporal estimation of precipitation in the Taihu Lake basin. The GWRMP algorithm can be applied to other regions with unevenly spaced high-density rain gauges.

Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 180 ◽  
Author(s):  
Jing Zhao ◽  
Long Yang ◽  
Lingjie Li ◽  
Lachun Wang ◽  
Qingfang Hu ◽  
...  

Based on the high-density gauged rainfall, the geographically weighted regression (GWR) was used to fuse the daily precipitation of rain gauges with those of Multi-source Weighted-Ensemble Precipitation V2.1 (MSWEP V2.1) and a new merged daily precipitation was generated (referred to as GWR merged precipitation, denoted by GWRMP). Then, the precipitation accuracy at 0.1° × 0.1° grid scale and the lake-effect on precipitation in the Taihu Lake Basin were investigated. Results show that GWRMP is characterized with higher precision and stronger spatial recognition ability compared with MSWEP in the whole basin at 0.1° × 0.1° grid scale, and lake area with a relatively sparse network of rain gauges is no exception. Topography is the most important influencing factor of rainfall in the Taihu Lake Basin, the Pearson correlation coefficient (r) between DEM and the main precipitation type (EOF-1) in the whole basin is 0.64, resulting in a rainy area in the southwestern mountain, and less rain at plain and lake area based on the GWRMP. The multi-year average precipitation in the lake upwind area is 8.31% lower than that in the downwind area. Different with the influence mechanism of precipitation in the southwestern mountainous area characterized by high consistency between the spatial distribution of precipitation and the climatic elements derive from the ERA5 meteorological reanalysis data (|r| > 0.6), there is a lower consistency in the lake downwind area (|r| < 0.5) and no consistency in the lake upwind area at the 0.25° × 0.25° grid scale. The southeast monsoon is deduced as the most important factor affecting the procedure of lake-effect on precipitation in the Taihu Lake Basin. The distribution of wind direction and wind speed determines the dynamic changes of surface water vapor to a certain extent, and the lake-effect on precipitation is most likely occurs in July.


2013 ◽  
Vol 23 (2) ◽  
pp. 203-215 ◽  
Author(s):  
Haixia Zhao ◽  
Bensheng You ◽  
Xuejun Duan ◽  
Stewart Becky ◽  
Xiaowei Jiang

2017 ◽  
Vol 122 (3) ◽  
pp. 690-707 ◽  
Author(s):  
Xibao Xu ◽  
Guishan Yang ◽  
Yan Tan ◽  
Xuguang Tang ◽  
Hong Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document