nutrient loadings
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 13)

H-INDEX

17
(FIVE YEARS 3)

Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2910
Author(s):  
Naila Mahdi ◽  
Krishna R. Pagilla

The United States has witnessed various extreme land use changes over the years. These changes led to alterations in watersheds’ characteristics, impacting their water quality and quantity. To quantify this impact in highly urbanized watersheds such as the Chicago Metropolitan Area, it is crucial to examine the characteristics and imperviousness distribution of urban land uses and available point and non-point sources. In this paper, the effect of urban runoff and nutrient loadings to water bodies in the Chicago River Watershed resulting from level (III) detailed urban land uses is investigated. A watershed scale hydrologic and water quality simulation using BASINS/HSPF model was developed for the highly urbanized watershed. Appropriate considerations were given to the effective impervious area (EIA). The results from the five-year calibrated water quality simulation were reasonably reflected with observed data in the study area and nutrient loadings of both point and non-point sources for 44 different land uses were found. The export coefficients (EC) values obtained are site-specific depending on conditions and variables at the watershed level such as physical characteristics, land use management practices, hydro-meteorological and topographical data, while using a continuous simulation approach and watershed perspective analysis. This is the first attempt to measure and model nutrients’ loadings using detailed land use types in the Chicago River Watershed. The proposed continuous calibrated and validated model can be used in the investigation and analysis of different scenarios and possible future conditions and land utilization.


Author(s):  
Григорий Тевелевич Фрумин ◽  
Алексей Юрьевич Горелышев ◽  
Алексей Викторович Кулинкович ◽  
Grigory Frumin ◽  
Alexey Gorelyshev ◽  
...  
Keyword(s):  

Author(s):  
Saranya Jeyalakshmi ◽  
Sahila Beegum

Agricultural water management plays a vital role in the food production and food security(Abbaspour, et al. 2007).Improper management of agriculture leads to local or far field water quality.Runoff from an agriculture land is considerably enriched with different kinds of nutrients, sediments, and pesticides. Nutrient loadings carried with the runoff has caused eutrophication to various degrees and scales, from small and large bays around the Great Lakes (e.g., Green Bay in Lake Michigan) to wide-scale eutrophication in some of the Great Lakes themselves (e.g., Lake Erie)(Inamdar, S.  and Naumov, A. 2006)..Water quality and watershed management programs are highly benefitted from simulation models since the advent of computer-based watershed models( Daggupati et al. 2018). To this extent, present study used Soil and Water assessment Tool (SWAT) to investigate the climate change impacts on nutrient loadings primarily occur from runoff from a Canadian agriculture dominated watershed. We found that non-point source pollutants especially total N and total P originating from agriculture land is decreasing during mid and late century projections. Streamflow during winter and fall is projected to increase compared to historical period. Keywords: SWAT modeling, climate change impact, non-point source pollution


2021 ◽  
Vol 9 ◽  
Author(s):  
Qingchuan Chou ◽  
Anders Nielsen ◽  
Tobias K. Andersen ◽  
Fenjuan Hu ◽  
Weiyu Chen ◽  
...  

The safety of drinking water is constantly being evaluated. In the last few decades, however, many drinking waters sources in the world, including in China, have undergone serious eutrophication and consequently water quality deterioration due to anthropogenic induced stressors such as elevated external nutrient inputs. In this study, we used the state-of-the-art complex, dynamic, mechanistic model GOTM-FABM-PCLake (a coupled one-dimensional hydrodynamic-lake ecosystem model) to quantitatively assess the impacts of external nutrient loading on the temperate Jihongtan reservoir in Shandong Province, China. Simulated values of all variables targeted in calibration (water temperature, dissolved oxygen, total nitrogen, total phosphorus, and chlorophyll a) agreed well with observations throughout the entire calibration and validation period and generally mimicked seasonal dynamics and inter-annual variations as found in the monitoring data. A series of scenarios, representing changed external nutrient loadings (both increasing and decreasing compared to the current nutrient load), were set up to quantify the effects on the reservoir water quality. Changes relative to the current external nutrient load had a significant effect on the simulated TN and TP concentrations in the reservoir. Our impact assessment indicate that TN will meet the Chinese water quality requirements of the water source (Class III) when the external nitrogen load is reduced by 70%, whereas TP will meet the requirements even if the external phosphorus load is increased by 100% relative to current loads. The model predicts progressively higher summer and autumn phytoplankton biomasses in the scenarios with increasing external phosphorus loading and potential toxic cyanobacteria will become more dominant at the expense of diatoms and other algae. Strict control of the external nutrient loading is therefore needed to maintain good drinking water quality in the reservoir.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 127
Author(s):  
Erik Jeppesen ◽  
Joachim Audet ◽  
Thomas A. Davidson ◽  
Érika M. Neif ◽  
Yu Cao ◽  
...  

Global changes (e.g., warming and population growth) affect nutrient loadings and temperatures, but global warming also results in more frequent extreme events, such as heat waves. Using data from the world’s longest-running shallow lake experimental mesocosm facility, we studied the effects of different levels of nutrient loadings combined with varying temperatures, which also included a simulated 1-month summer heat wave (HW), on nutrient and oxygen concentrations, gross ecosystem primary production (GPP), ecosystem respiration (ER), net ecosystem production (NEP) and bacterioplankton production (BACPR). The mesocosms had two nutrient levels (high (HN) and low (LN)) combined with three different temperatures according to the IPCC 2007 warming scenarios (unheated, A2 and A2 + 50%) that were applied for 11 years prior to the present experiment. The simulated HW consisted of 5 °C extra temperature increases only in the A2 and A2 + 50% treatments applied from 1 July to 1 August 2014. Linear mixed effect modeling revealed a strong effect of nutrient treatment on the concentration of chlorophyll a (Chl-a), on various forms of phosphorus and nitrogen as well as on oxygen concentration and oxygen percentage (24 h means). Applying the full dataset, we also found a significant positive effect of nutrient loading on GPP, ER, NEP and BACPR, and of temperature on ER and BACPR. The HW had a significant positive effect on GPP and ER. When dividing the data into LN and HN, temperature also had a significant positive effect on Chl-a in LN and on orthophosphate in HN. Linear mixed models revealed differential effects of nutrients, Chl-a and macrophyte abundance (PVI) on the metabolism variables, with PVI being particularly important in the LN mesocosms. All metabolism variables also responded strongly to a cooling-low irradiance event in the middle of the HW, resulting in a severe drop in oxygen concentrations, not least in the HN heated mesocosms. Our results demonstrate strong effects of nutrients as well as an overall rapid response in oxygen metabolism and BACPR to changes in temperature, including HWs, making them sensitive ecosystem indicators of climate warming.


2021 ◽  
Vol 41 (19) ◽  
Author(s):  
张笑欣,易雨君,刘泓汐,杨志峰 ZHANG Xiaoxin

Limnologica ◽  
2020 ◽  
Vol 80 ◽  
pp. 125744 ◽  
Author(s):  
Elfritzson M. Peralta ◽  
Leocris S. Batucan ◽  
Irisse Bianca B. De Jesus ◽  
Ellis Mika C. Triño ◽  
Yoshitoshi Uehara ◽  
...  

Agronomy ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 2 ◽  
Author(s):  
Giuseppe Pulighe ◽  
Guido Bonati ◽  
Marco Colangeli ◽  
Lorenzo Traverso ◽  
Flavio Lupia ◽  
...  

Predicting the availability and quality of freshwater resources is a pressing concern in the Mediterranean area, where a number of agricultural systems depend solely on precipitation. This study aims at predicting streamflow and nonpoint pollutant loads in a temporary river system in the Mediterranean basin (Sulcis area, Sardinia, Italy). Monthly discharge, suspended sediment, nitrate nitrogen, total nitrogen, mineral phosphorus, and dissolved oxygen in-stream monitoring data from gauge stations were used to calibrate and validate the Soil and Water Assessment Tool model for the period 1979–2009. A Sequential Uncertainty Fitting procedure was used to auto-calibrate parameter uncertainties and model evaluation. Monthly simulation during the validation period showed a positive model performance for streamflow with Nash–Sutcliffe efficiency and percent bias values of 0.7% and 18.7%, respectively. The simulation results at a watershed level indicate that the sediment load was 1.13 t ha−1 year−1, while for total nitrogen and total phosphorus, the simulated values were 4.8 and 1.18 kg ha−1 year−1, respectively. These results were consistent with the values of soil and nutrient losses observed in the Mediterranean area, although hot-spot areas with high nutrient loadings were identified. The calibrated model could be used to assess long-term impacts on water quality associated with the simulated land use scenarios.


Sign in / Sign up

Export Citation Format

Share Document