scholarly journals Electron and Positron Scattering by Non-Central Potentials: Matrix Elements and Symmetry Properties in the First Born Approximation

Author(s):  
Marcos Barp ◽  
Felipe Arretche

The Fourier transform of Cartesian Gaussian functions product is presented in the light of positron scattering. The calculation of this class of integrals is crucial in order to obtain the scattering amplitude in the first Born approximation framework for an ab initio method recently proposed. A general solution to the scattering amplitude is given to a molecular target with no restriction due to symmetry. Moreover, symmetry relations are presented with the purpose of identifying terms that do not contribute to the calculation for the molecules in the D∞h point group optimizing the computational effort. Keywords — Positron and electron scattering, Fourier transform of the Gaussian product theorem, McMurchie-Davidson procedure, Obara-Saika procedure, linear molecules .

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1060
Author(s):  
Enrico Celeghini ◽  
Manuel Gadella ◽  
Mariano A. del del Olmo

We introduce a multi-parameter family of bases in the Hilbert space L2(R) that are associated to a set of Hermite functions, which also serve as a basis for L2(R). The Hermite functions are eigenfunctions of the Fourier transform, a property that is, in some sense, shared by these “generalized Hermite functions”. The construction of these new bases is grounded on some symmetry properties of the real line under translations, dilations and reflexions as well as certain properties of the Fourier transform. We show how these generalized Hermite functions are transformed under the unitary representations of a series of groups, including the Weyl–Heisenberg group and some of their extensions.


Author(s):  
Katy L. Chubb ◽  
Per Jensen ◽  
Sergei N. Yurchenko

A numerical application of linear-molecule symmetry properties, described by the D∞h point group, is formulated in terms of lower-order symmetry groups Dnh with finite n. Character tables and irreducible representation transformation matrices are presented for Dnh groups with arbitrary n-values. These groups are subsequently used in the construction of symmetry-adapted ro-vibrational basis functions for solving the Schrödinger equations of linear molecules as part of the variational nuclear motion program TROVE. The TROVE symmetrisation procedure is based on a set of "reduced" vibrational eigenvalue problems with simplified Hamiltonians. The solutions of these eigenvalue problems have now been extended to include the classification of basis-set functions using ℓ, the eigenvalue (in units of ℏ) of the vibrational angular momentum operator L ^ z . This facilitates the symmetry adaptation of the basis set functions in terms of the irreducible representations of Dnh. 12C2H2 is used as an example of a linear molecule of D∞h point group symmetry to illustrate the symmetrisation procedure.


1962 ◽  
Vol 58 (2) ◽  
pp. 363-376 ◽  
Author(s):  
J. Underhill

In (l) Khuri has proved the validity of a dispersion relation for non-relativistic potential scattering. More precisely, he has shown that if the potential V(r) is central and satisfies: then the scattering amplitude f(k, τ) = M(E, τ) (where E = k2 is the energy) satisfies the following dispersion relation for fixed momentum transfer τ ≤ 2α: In (2), Rj(τ) is the (real) residue of the scattering amplitude at the bound state Ej and is the Fourier transform of the potential .


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Marc Gillioz ◽  
Marco Meineri ◽  
João Penedones

Abstract We define form factors and scattering amplitudes in Conformal Field Theory as the coefficient of the singularity of the Fourier transform of time-ordered correlation functions, as p2 → 0. In particular, we study a form factor F(s, t, u) obtained from a four-point function of identical scalar primary operators. We show that F is crossing symmetric, analytic and it has a partial wave expansion. We illustrate our findings in the 3d Ising model, perturbative fixed points and holographic CFTs.


2021 ◽  
Vol 11 (6) ◽  
pp. 2582
Author(s):  
Lucas M. Martinho ◽  
Alan C. Kubrusly ◽  
Nicolás Pérez ◽  
Jean Pierre von der Weid

The focused signal obtained by the time-reversal or the cross-correlation techniques of ultrasonic guided waves in plates changes when the medium is subject to strain, which can be used to monitor the medium strain level. In this paper, the sensitivity to strain of cross-correlated signals is enhanced by a post-processing filtering procedure aiming to preserve only strain-sensitive spectrum components. Two different strategies were adopted, based on the phase of either the Fourier transform or the short-time Fourier transform. Both use prior knowledge of the system impulse response at some strain level. The technique was evaluated in an aluminum plate, effectively providing up to twice higher sensitivity to strain. The sensitivity increase depends on a phase threshold parameter used in the filtering process. Its performance was assessed based on the sensitivity gain, the loss of energy concentration capability, and the value of the foreknown strain. Signals synthesized with the time–frequency representation, through the short-time Fourier transform, provided a better tradeoff between sensitivity gain and loss of energy concentration.


2021 ◽  
Vol 262 ◽  
pp. 117928
Author(s):  
Shusaku Nakajima ◽  
Shuhei Horiuchi ◽  
Akifumi Ikehata ◽  
Yuichi Ogawa

Sign in / Sign up

Export Citation Format

Share Document