scholarly journals Comparative analysis of the complete mitochondrial genomes of four cordyceps fungi

Author(s):  
can zhong ◽  
jian jin ◽  
rongrong zhou ◽  
hao liu ◽  
jing xie ◽  
...  

Cordyceps is a large group of entomogenous, medicinally important fungi. In this study, we sequenced, assembled, and annotated the entire mitochondrial genome of O. xuefengensis, in addition to comparing it against three other complete cordyceps mitogenomes that were previously published. Comparative analysis indicated that the four complete mitogenomes are all composed of circular DNA molecules, although their sizes significantly differ due to high variability in intron and intergenic region sizes in the O. sinensis and O. xuefengensis mitogenomes. All mitogenomes contain 14 conserved genes and two ribosomal RNA genes, but varying numbers of tRNA introns. The Ka/Ks ratios for all 14 PCGs and rps3 were all less than 1, indicating that these genes have been subject to purifying selection. Phylogenetic analysis was conducted using concatenated amino acid and nucleotide sequences of the 14 PCGs and rps3 using two different methods (Maximum Likelihood and Bayesian analysis), revealing highly supported relationships between O. xuefengensis and other Ophiocordyceps species, in addition to a close relationship with O. sinensis. Further, the analyses indicated that cox1 and rps3 play important roles in population differentiation. These mitogenomes will allow further study of the population genetics, taxonomy, and evolutionary biology of medicinally important cordyceps species.

1991 ◽  
Vol 48 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Malcolm J. Gardner ◽  
Jean E. Feagin ◽  
Daphne J. Moore ◽  
David F. Spencer ◽  
Michael W.Gray ◽  
...  

1989 ◽  
Vol 32 (2-3) ◽  
pp. 285-296 ◽  
Author(s):  
Marion Huber ◽  
Barbara Koller ◽  
Carlos Gitler ◽  
David Mirelman ◽  
Michel Revel ◽  
...  

Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 92
Author(s):  
Daqu Liang ◽  
Haoyun Wang ◽  
Jun Zhang ◽  
Yuanxiang Zhao ◽  
Feng Wu

Fagus longipetiolata Seemen is a deciduous tree of the Fagus genus in Fagaceae, which is endemic to China. In this study, we successfully sequenced the cp genome of F. longipetiolata, compared the cp genomes of the Fagus genus, and reconstructed the phylogeny of Fagaceae. The results showed that the cp genome of F. longipetiolata was 158,350 bp, including a pair of inverted repeat (IRA and IRB) regions with a length of 25,894 bp each, a large single-copy (LSC) region of 87,671 bp, and a small single-copy (SSC) region of 18,891 bp. The genome encoded 131 unique genes, including 81 protein-coding genes, 37 transfer RNA genes (tRNAs), 8 ribosomal RNA genes (rRNAs), and 5 pseudogenes. In addition, 33 codons and 258 simple sequence repeats (SSRs) were identified. The cp genomes of Fagus were relatively conserved, especially the IR regions, which showed the best conservation, and no inversions or rearrangements were found. The five regions with the largest variations were the rps12, rpl32, ccsA, trnW-CCA, and rps3 genes, which spread over in LSC and SSC. The comparison of gene selection pressure indicated that purifying selection was the main selective pattern maintaining important biological functions in Fagus cp genomes. However, the ndhD, rpoA, and ndhF genes of F. longipetiolata were affected by positive selection. Phylogenetic analysis revealed that F. longipetiolata and F. engleriana formed a close relationship, which partially overlapped in their distribution in China. Our analysis of the cp genome of F. longipetiolata would provide important genetic information for further research into the classification, phylogeny and evolution of Fagus.


2021 ◽  
Vol 9 ◽  
Author(s):  
Luigi Colin ◽  
Chris Yesson ◽  
Catherine Head

We present the first mitochondrial genomes from Chagos Archipelago, Indian Ocean, of three putative species of reef forming Acropora (Acropora aff. tenuis, Acropora aff. cytherea and Acropora aff. orbicularis). The circular genome consists respectively of 18,334 bp, 18,353 bp and 18,584 bp. All mitochondrial genomes recovered comprise 13 protein-coding genes, two transfer RNA genes and two ribosomal RNA genes, with an overall GC content ranging from 37.9% to 38.0%. These new genomic data contribute to our increased understanding of genus Acropora and its species boundaries, ultimately aiding species monitoring and conservation efforts.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 209
Author(s):  
Jung-Il Kim ◽  
Thinh Dinh Do ◽  
Yisoo Choi ◽  
Yonggu Yeo ◽  
Chang-Bae Kim

Cacatua alba, Cacatua galerita, and Cacatua goffiniana are parrots of the family Cacatuidae. Wild populations of these species are declining with C. alba listed by the International Union for the Conservation of Nature and Natural Resources (IUCN) as Endangered. In this study, complete mitogenomes were sequenced for a comparative analysis among the Cacatua species, and a detailed analysis of the control region. Mitogenome lengths of C. alba,C. galerita, and C. goffiniana were 18,894, 18,900, and 19,084 bp, respectively. They included 13 protein coding genes, two ribosomal RNA genes, 24 transfer RNA genes, three degenerated genes, and two control regions. Ten conserved motifs were found in three domains within each of the two control regions. For an evolution of duplicated control regions of Cacatua, domain I and the 3′ end of domain III experienced an independent evolution, while domain II and most of the regions of domain III was subjected to a concerted evolution. Based on a phylogenetic analysis of 37 mitochondrial genes, the genus Cacatua formed a well-supported, monophyletic, crown group within the Cacatuidae. Molecular dating results showed that Cacatua diverged from other genera of Cacatuinae in the middle of Miocene.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 757
Author(s):  
Qi Sun ◽  
Yumeng Yang ◽  
Xiangyu Hao ◽  
Jintian Xiao ◽  
Jiaqi Liu ◽  
...  

To determine the significance of mitochondrial genome characteristics in revealing phylogenetic relationships and to shed light on the molecular evolution of the Coeliadinae species, the complete mitochondrial genomes (mitogenomes) of five Coeliadinae species were newly sequenced and analyzed, including Hasora schoenherr, Burara miracula, B. oedipodea, B. harisa, and Badamia exclamationis. The results show that all five mitogenomes are double-strand circular DNA molecules, with lengths of 15,340 bp, 15,295 bp, 15,304 bp, 15,295 bp, and 15,289 bp, respectively, and contain the typical 37 genes and a control region. Most protein-coding genes (PCGs) begin with ATN, with 3 types of stop codons including TAA, TAG, and an incomplete codon T-; most of the genes terminate with TAA. All of the transfer RNA genes (tRNAs) present the typical cloverleaf secondary structure except for the trnS1. Several conserved structural elements are found in the AT-rich region. Phylogenetic analyses based on three datasets (PCGs, PRT, and 12PRT) and using maximum likelihood (ML) and Bayesian inference (BI) methods show strong support for the monophyly of Coeliadinae, and the relationships of the five species are (B. exclamationis + ((B. harisa + (B. oedipodea + B. miracula)) + H. schoenherr)).


2020 ◽  
Author(s):  
Johann Johann And Devika

BACKGROUND Since November 2019, Covid - 19 has spread across the globe costing people their lives and countries their economic stability. The world has become more interconnected over the past few decades owing to globalisation and such pandemics as the Covid -19 are cons of that. This paper attempts to gain deeper understanding into the correlation between globalisation and pandemics. It is a descriptive analysis on how one of the factors that was responsible for the spread of this virus on a global scale is globalisation. OBJECTIVE - To understand the close relationship that globalisation and pandemics share. - To understand the scale of the spread of viruses on a global scale though a comparison between SARS and Covid -19. - To understand the sale of globalisation present during SARS and Covid - 19. METHODS A descriptive qualitative comparative analysis was used throughout this research. RESULTS Globalisation does play a significant role in the spread of pandemics on a global level. CONCLUSIONS - SARS and Covid - 19 were varied in terms of severity and spread. - The scale of globalisation was different during the time of SARS and Covid - 19. - Globalisation can be the reason for the faster spread in Pandemics.


1987 ◽  
Vol 8 (1) ◽  
pp. 3-12 ◽  
Author(s):  
R. A. Jorgensen ◽  
R. E. Cuellar ◽  
W. F. Thompson ◽  
T. A. Kavanagh

Sign in / Sign up

Export Citation Format

Share Document