scholarly journals Automation of hydrological drought typology to study drought propagation in a tropical catchment

Author(s):  
Beatriz Quesada-Montano ◽  
Anne F. Van Loon ◽  
Hugo Hidalgo ◽  
Ida Westerberg ◽  
Christian Birkel ◽  
...  

Understanding how droughts propagate through the hydrological cycle from precipitation to streamflow and groundwater is important for improving water and risk management policies. At the catchment scale, the analysis of drought propagation and classification into drought types is usually done manually, which can be time consuming and difficult to replicate. Here, we developed an automated, objective procedure for classification of different drought types with the aim to study drought propagation in the tropics. The method was applied to the Savegre catchment in Costa Rica as a proof-of-concept. We first confirmed that drought events in the catchment could be classified into the process-based typology from the literature: classical rainfall deficit drought, wet-to-dry season drought, and composite drought. The automation algorithm was able to replicate the classification obtained with the manual typology with the exception of two events, and thus it is a development towards objective and time efficient hydrological drought analysis in tropical catchments. Most of the detected hydrological droughts (80% and 76% of all river discharge and baseflow droughts, respectively) were classical rainfall deficit droughts, which suggests that climate plays a more important role in drought development than catchment characteristics in this catchment. However, the importance of catchment characteristics was revealed by the presence of severe composite drought events and by the attenuation of significant precipitation droughts.

2011 ◽  
Vol 8 (6) ◽  
pp. 11413-11483 ◽  
Author(s):  
A. F. Van Loon ◽  
H. A. J. Van Lanen

Abstract. Hydrological drought events have very different causes and effects. Classifying these events into distinct types can be useful for both science and management. We propose a classification of hydrological drought types that is based on the governing drought propagation processes. In this classification six hydrological drought types are distinguished, i.e. (i) classical rainfall deficit drought, (ii) rain-to-snow-season drought, (iii) wet-to-dry-season drought, (iv) cold snow season drought, (v) warm snow season drought, and (vi) composite drought. The processes underlying these drought types are a result of the interplay of temperature and precipitation at catchment scale in different seasons. As a test case, about 125 groundwater droughts and about 210 discharge droughts in five contrasting headwater catchments in Europe have been classified. The most common drought type in all catchments is the classical rainfall deficit drought (almost 50% of all events), but in the selected catchments these are mostly minor events. If only the five most severe drought events of each catchment are considered, a shift towards more rain-to-snow-season droughts, warm snow season droughts, and composite droughts is found. The occurrence of hydrological drought types is determined by climate and catchment characteristics. The typology is transferable to other catchments, incl. outside Europe, because it is generic and based upon processes that occur around the world. A general framework is proposed to identify drought type occurrence in relation to climate and catchment characteristics.


2012 ◽  
Vol 16 (7) ◽  
pp. 1915-1946 ◽  
Author(s):  
A. F. Van Loon ◽  
H. A. J. Van Lanen

Abstract. Hydrological drought events have very different causes and effects. Classifying these events into distinct types can be useful for both science and management. We propose a hydrological drought typology that is based on governing drought propagation processes derived from catchment-scale drought analysis. In this typology six hydrological drought types are distinguished, i.e. (i) classical rainfall deficit drought, (ii) rain-to-snow-season drought, (iii) wet-to-dry-season drought, (iv) cold snow season drought, (v) warm snow season drought, and (vi) composite drought. The processes underlying these drought types are the result of the interplay of temperature and precipitation at catchment scale in different seasons. As a test case, about 125 groundwater droughts and 210 discharge droughts in five contrasting headwater catchments in Europe have been classified. The most common drought type in all catchments was the classical rainfall deficit drought (almost 50% of all events), but in the selected catchments these were mostly minor events. If only the five most severe drought events of each catchment are considered, a shift towards more rain-to-snow-season droughts, warm snow season droughts, and composite droughts was found. The occurrence of hydrological drought types is determined by climate and catchment characteristics. The drought typology is transferable to other catchments, including outside Europe, because it is generic and based upon processes that occur around the world. A general framework is proposed to identify drought type occurrence in relation to climate and catchment characteristics.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1000
Author(s):  
Muhammad Nouman Sattar ◽  
Muhammad Jehanzaib ◽  
Ji Eun Kim ◽  
Hyun-Han Kwon ◽  
Tae-Woong Kim

Drought is one of the most destructive natural hazards and results in negative effects on the environment, agriculture, economics, and society. A meteorological drought originates from atmospheric components, while a hydrological drought is influenced by properties of the hydrological cycle and generally induced by a continuous meteorological drought. Several studies have attempted to explain the cross dependencies between meteorological and hydrological droughts. However, these previous studies did not consider the propagation of drought classes. Therefore, in this study, to consider the drought propagation concept and to probabilistically assess the meteorological and hydrological drought classes, characterized by the Standardized Precipitation Index (SPI) and Standardized Runoff Index (SRI), respectively, we employed the Markov Bayesian Classifier (MBC) model that combines the procedure of iteration of feature extraction, classification, and application for assessment of drought classes for both SPI and SRI. The classification results were compared using the observed SPI and SRI, as well as with previous findings, which demonstrated that the MBC was able to reasonably determine drought classes. The accuracy of the MBC model in predicting all the classes of meteorological drought varies from 36 to 76% and in predicting all the classes of hydrological drought varies from 33 to 70%. The advantage of the MBC-based classification is that it considers drought propagation, which is very useful for planning, monitoring, and mitigation of hydrological drought in areas having problems related to hydrological data availability.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Hana Salimi ◽  
Esmail Asadi ◽  
Sabereh Darbandi

AbstractWith respect to the necessity of comprehensive studies on drought and also high damages that caused by drought, this research studied the meteorological and hydrological droughts. In this study, Lighvan, Navroud and Seqez basins with different climates were selected. We used monthly data of stream flow, precipitation and evaporation from 1992 to 2016 for the study of drought phenomena. The aim at this study is to analyze the SPI and SPEI for determination of dry and wet meteorological periods and use of the SSI for the exploration of hydrological drought. The analysis of drought characteristics such as intensity and duration in three areas with different climates shows that the climate change has a major impact on the characteristics of the droughts. The relations between the duration and severity of drought have been more accurate in the period of 9 months in the Navroud watershed basin. The most significant events are SPI-9 with the duration of 57 months and the severity of 34.7, SPEI-9 with the duration of 34 months and the severity of 28.09 and SSI-9 with the duration of 41 months and the severity of 30.2. According to the obtained equations in different time periods, it was resulted that the highest accuracy was observed in the relationship between the meteorological and hydrological drought characteristics in the watershed basin of Seqez for a period of 6 months. The results show that in all three basins, the correlation between the meteorological and hydrological drought is significant at the level of 99%. Results show that hydrological and meteorological droughts in Navroud and Lighvan basins have a significant correlation with 48-month periods and in the Seqez basin with 12- and 24-month periods, and the relations between hydrological droughts and meteorological droughts were obtained using the nonlinear linear models (polynomial, exponential and logarithmic). The good R2 between the duration and severity of SPI-9 and SSI-9 is 0.8 and 0.92, respectively, for polynomial equations. The maximum determination coefficient of duration and severity of SPEI-9 and SSI-9 is 0.72 and 0.82, respectively, using polynomial equation. The application of several indices indicating different components of the hydrological cycle integrates many factors that affect and trigger droughts, and thus can help in providing a wider realization of the characteristics of droughts on various water sections.


2005 ◽  
Vol 9 (5) ◽  
pp. 523-533 ◽  
Author(s):  
S. M. Vicente-Serrano ◽  
J. I. López-Moreno

Abstract. At present, the Standardized Precipitation Index (SPI) is the most widely used drought index to provide good estimations about the intensity, magnitude and spatial extent of droughts. The main advantage of the SPI in comparison with other indices is the fact that the SPI enables both determination of drought conditions at different time scales and monitoring of different drought types. It is widely accepted that SPI time scales affect different sub-systems in the hydrological cycle due to the fact that the response of the different water usable sources to precipitation shortages can be very different. The long time scales of SPI are related to hydrological droughts (river flows and reservoir storages). Nevertheless, few analyses empirically verify these statements or the usefulness of the SPI time scales to monitor drought. In this paper, the SPI at different time scales is compared with surface hydrological variables in a big closed basin located in the central Spanish Pyrenees. We provide evidence about the way in which the longer (>12 months) SPI time scales may not be useful for drought quantification in this area. In general, the surface flows respond to short SPI time scales whereas the reservoir storages respond to longer time scales (7–10 months). Nevertheless, important seasonal differences can be identified in the SPI-usable water sources relationships. This suggests that it is necessary to test the drought indices and time scales in relation to their usefulness for monitoring different drought types under different environmental conditions and water demand situations.


2013 ◽  
Vol 68 (10) ◽  
pp. 2164-2170 ◽  
Author(s):  
Nora Sillanpää ◽  
Harri Koivusalo

Despite the crucial role of snow in the hydrological cycle in cold climate conditions, monitoring studies of urban snow quality often lack discussions about the relevance of snow in the catchment-scale runoff management. In this study, measurements of snow quality were conducted at two residential catchments in Espoo, Finland, simultaneously with continuous runoff measurements. The results of the snow quality were used to produce catchment-scale estimates of areal snow mass loads (SML). Based on the results, urbanization reduced areal snow water equivalent but increased pollutant accumulation in snow: SMLs in a medium-density residential catchment were two- to four-fold higher in comparison with a low-density residential catchment. The main sources of pollutants were related to vehicular traffic and road maintenance, but also pet excrement increased concentrations to a high level. Ploughed snow can contain 50% of the areal pollutant mass stored in snow despite its small surface area within a catchment.


Author(s):  
Konstantinos Exarchos ◽  
Dimitrios Potonos ◽  
Agapi Aggelopoulou ◽  
Agni Sioutkou ◽  
Konstantinos Kostikas

2015 ◽  
Vol 19 (4) ◽  
pp. 1993-2016 ◽  
Author(s):  
A. F. Van Loon ◽  
S. W. Ploum ◽  
J. Parajka ◽  
A. K. Fleig ◽  
E. Garnier ◽  
...  

Abstract. For drought management and prediction, knowledge of causing factors and socio-economic impacts of hydrological droughts is crucial. Propagation of meteorological conditions in the hydrological cycle results in different hydrological drought types that require separate analysis. In addition to the existing hydrological drought typology, we here define two new drought types related to snow and ice. A snowmelt drought is a deficiency in the snowmelt discharge peak in spring in snow-influenced basins and a glaciermelt drought is a deficiency in the glaciermelt discharge peak in summer in glacierised basins. In 21 catchments in Austria and Norway we studied the meteorological conditions in the seasons preceding and at the time of snowmelt and glaciermelt drought events. Snowmelt droughts in Norway were mainly controlled by below-average winter precipitation, while in Austria both temperature and precipitation played a role. For glaciermelt droughts, the effect of below-average summer air temperature was dominant, both in Austria and Norway. Subsequently, we investigated the impacts of temperature-related drought types (i.e. snowmelt and glaciermelt drought, but also cold and warm snow season drought and rain-to-snow-season drought). In historical archives and drought databases for the US and Europe many impacts were found that can be attributed to these temperature-related hydrological drought types, mainly in the agriculture and electricity production (hydropower) sectors. However, drawing conclusions on the frequency of occurrence of different drought types from reported impacts is difficult, mainly because of reporting biases and the inevitably limited spatial and temporal scales of the information. Finally, this study shows that complete integration of quantitative analysis of causing factors and qualitative analysis of impacts of temperature-related droughts is not yet possible. Analysis of selected events, however, points out that it can be a promising research area if more data on drought impacts become available.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0203044 ◽  
Author(s):  
C. Stönner ◽  
A. Edtbauer ◽  
B. Derstroff ◽  
E. Bourtsoukidis ◽  
T. Klüpfel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document