scholarly journals Time Synchronized High Performing Cluster-Based Routing Algorithm for Wireless Sensor Networks

2013 ◽  
Vol 5 (11) ◽  
pp. 561-567
Author(s):  
Huifang DENG

In this paper, we investigated the data fusion routing algorithm and the time synchronization algorithm for the wireless sensor networks. First, we proposed a new data fusion routing algorithm - Low Energy Consumption Cluster-Based Routing Algorithm (LECCBRA). Simulation results show that the total energy can be effectively saved, and the balance in energy consumption between clusters can be achieved with LECCBRA, thus the network lifetime is extended. Second, we proposed a time synchronization algorithm - Clustering-based Time Synchronization (CBTS), which is suitable for LECCBRA. Performance analysis and simulation results show that the total energy can be effectively saved, and the accuracy can be improved.

2011 ◽  
Vol 403-408 ◽  
pp. 1397-1400
Author(s):  
Ping Wang ◽  
Shi Wu Xu

Time synchronization is important for many applications in Wireless Sensor Networks, how to improve synchronization precision and reduce energy consumption are the two important aspects in Wireless Sensor Networks. In this paper, first, we introduce the TPSN and DMTS algorithms, after analyzing the advantages and disadvantages of both. Make use of two algorithms have been integrated. We proposed a DMSN time synchronization algorithm. Experiments show that ,comparing with the TPSN algorithm, DMSN algorithm has lower complexity and energy consumption.It can be easily applied in Wireless Sensor Networks.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Mingxin Yang ◽  
Jingsha He ◽  
Yuqiang Zhang

Due to limited resources in wireless sensor nodes, energy efficiency is considered as one of the primary constraints in the design of the topology of wireless sensor networks (WSNs). Since data that are collected by wireless sensor nodes exhibit the characteristics of temporal association, data fusion has also become a very important means of reducing network traffic as well as eliminating data redundancy as far as data transmission is concerned. Another reason for data fusion is that, in many applications, only some of the data that are collected can meet the requirements of the sink node. In this paper, we propose a method to calculate the number of cluster heads or data aggregators during data fusion based on the rate-distortion function. In our discussion, we will first establish an energy consumption model and then describe a method for calculating the number of cluster heads from the point of view of reducing energy consumption. We will also show through theoretical analysis and experimentation that the network topology design based on the rate-distortion function is indeed more energy-efficient.


2013 ◽  
Vol 321-324 ◽  
pp. 600-603
Author(s):  
Wei Liu ◽  
Qin Sheng Du ◽  
Le Le Wang

Wireless sensor networks integrated four technologies including sensor, embedded computing, network technology and wireless communication. It is a new type of non-infrastructure wireless network. In this paper, a data fusion method has been brought forward based on wireless sensor networks, and through an algorithm simulation test, It is proved that the algorithm is effective to reduce the energy consumption of the network, and extend the lifetime of the network.


2021 ◽  
Author(s):  
Huangshui Hu ◽  
Yuxin Guo ◽  
Jinfeng Zhang ◽  
Chunhua Yin ◽  
Dong Gao

Abstract In order to solve the problem of hot spot caused by uneven energy consumption of nodes in Wireless Sensor Networks (WSNs) and reduce the network energy consumption, a novel cluster routing algorithm called CRPL for ring based wireless sensor networks using Particle Swarm Optimization (PSO) and Lion Swarm Optimization (LSO) is proposed in this paper. In CRPL, the optimal cluster head (CH) of each ring are selected by using LSO whose fitness function is composed of energy,number of neighbor nodes, number of cluster heads and distance. Moreover, PSO with a multi-objective fitness function considering distance, energy and cluster size is used to find the next hop relay node in the process of data transmission, and the optimal routing paths are obtained, so as to alleviate the hot spot problem as well as decrease the energy consumption in the routing process. The simulation results show that, compared with some existing optimization algorithms, CRPL has better effects in balancing the energy consumption of the network and prolonging the life cycle of the network.


Sign in / Sign up

Export Citation Format

Share Document