scholarly journals Assessment of land use change scenario to increase primary productivity function at local scale

2019 ◽  
Author(s):  
Kristine Valujeva ◽  
◽  
Aleksejs Nipers ◽  
Ainars Lupikis ◽  
Jovita Pilecka ◽  
...  
2021 ◽  
Author(s):  
Peter Hoffmann ◽  
Diana Rechid ◽  
Vanessa Reinhart ◽  
Christina Asmus ◽  
Edouard L. Davin ◽  
...  

<p>Land-use and land cover (LULC) are continuously changing due to environmental changes and anthropogenic activities. Many observational and modeling studies show that LULC changes are important drivers altering land surface feedbacks and land-atmosphere exchange processes that have substantial impact on climate on the regional and local scale. Yet, most long-term regional climate modeling studies do not account for these changes. Therefore, within the WCRP CORDEX Flagship Pilot Study LUCAS (Land Use Change Across Scales) a new workflow was developed to generate high-resolution annual land cover change time series based on past reconstructions and future projections. First, the high-resolution global land cover dataset ESA-CCI LC (~300 m resolution) is aggregated and converted to a 0.1° resolution, fractional plant functional type (PFT) dataset. Second, the land use change information from the land-use harmonized dataset (LUH2), provided at 0.25° resolution as input for CMIP6 experiments, is translated into PFT changes employing a newly developed land use translator (LUT). The new LUT was first applied to the EURO-CORDEX domain. The resulting LULC maps for past and future - the LUCAS LUC dataset - can be applied as land use forcing to the next generation RCM simulations for downscaling CMIP6 by the EURO-CORDEX community and in the framework of FPS LUCAS. The dataset includes land cover and land management practices changes important for the regional and local scale such as urbanization and irrigation. The LUCAS LUC workflow is applied to further CORDEX domains, such as Australasia and North America. The resulting past and future land cover changes will be presented, and challenges regarding the application of the new workflow to different regions will be addressed. In addition, issues related to the implementation of the dataset into different RCMs will be discussed.</p>


2014 ◽  
Vol 14 (2) ◽  
pp. 1011-1024 ◽  
Author(s):  
O. J. Squire ◽  
A. T. Archibald ◽  
N. L. Abraham ◽  
D. J. Beerling ◽  
C. N. Hewitt ◽  
...  

Abstract. Over the 21st century, changes in CO2 levels, climate and land use are expected to alter the global distribution of vegetation, leading to changes in trace gas emissions from plants, including, importantly, the emissions of isoprene. This, combined with changes in anthropogenic emissions, has the potential to impact tropospheric ozone levels, which above a certain level are harmful to animals and vegetation. In this study we use a biogenic emissions model following the empirical parameterisation of the MEGAN model, with vegetation distributions calculated by the Sheffield Dynamic Global Vegetation Model (SDGVM) to explore a range of potential future (2095) changes in isoprene emissions caused by changes in climate (including natural land use changes), land use, and the inhibition of isoprene emissions by CO2. From the present-day (2000) value of 467 Tg C yr−1, we find that the combined impact of these factors could cause a net decrease in isoprene emissions of 259 Tg C yr−1 (55%) with individual contributions of +78 Tg C yr−1 (climate change), −190 Tg C yr−1 (land use) and −147 Tg C yr−1 (CO2 inhibition). Using these isoprene emissions and changes in anthropogenic emissions, a series of integrations is conducted with the UM-UKCA chemistry-climate model with the aim of examining changes in ozone over the 21st century. Globally, all combined future changes cause a decrease in the tropospheric ozone burden of 27 Tg (7%) from 379 Tg in the present-day. At the surface, decreases in ozone of 6–10 ppb are calculated over the oceans and developed northern hemispheric regions, due to reduced NOx transport by PAN and reductions in NOx emissions in these areas respectively. Increases of 4–6 ppb are calculated in the continental tropics due to cropland expansion in these regions, increased CO2 inhibition of isoprene emissions, and higher temperatures due to climate change. These effects outweigh the decreases in tropical ozone caused by increased tropical isoprene emissions with climate change. Our land use change scenario consists of cropland expansion, which is most pronounced in the tropics. The tropics are also where land use change causes the greatest increases in ozone. As such there is potential for increased crop exposure to harmful levels of ozone. However, we find that these ozone increases are still not large enough to raise ozone to such damaging levels.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Pengyan Zhang ◽  
Yanyan Li ◽  
Wenlong Jing ◽  
Dan Yang ◽  
Yu Zhang ◽  
...  

Urbanization is causing profound changes in ecosystem functions at local and regional scales. The net primary productivity (NPP) is an important indicator of global change, rapid urbanization and climate change will have a significant impact on NPP, and urban expansion and climate change in different regions have different impacts on NPP, especially in densely populated areas. However, to date, efforts to quantify urban expansion and climate change have been limited, and the impact of long-term continuous changes in NPP has not been well understood. Based on land use data, night light data, NPP data, climate data, and a series of social and economic data, we performed a comprehensive analysis of land use change in terms of type and intensity and explored the pattern of urban expansion and its relationship with NPP and climate change for the period of 2000–2015, taking Zhengzhou, China, as an example. The results show that the major form of land use change was cropland to built-up land during the 2000–2015 period, with a total area of 367.51 km2 converted. The NPP exhibited a generally increasing trend in the study area except for built-up land and water area. The average correlation coefficients between temperature and NPP and precipitation and NPP were 0.267 and 0.020, respectively, indicating that an increase in temperature and precipitation can promote NPP despite significant spatial differences. During the examined period, most expansion areas exhibited an increasing NPP trend, indicating that the influence of urban expansion on NPP is mainly characterized by an evident influence of the expansion area. The study can provide a reference for Zhengzhou and even the world's practical research to improve land use efficiency, increase agricultural productivity and natural carbon sinks, and maintain low-carbon development.


CATENA ◽  
2011 ◽  
Vol 86 (1) ◽  
pp. 36-48 ◽  
Author(s):  
C. Ronfort ◽  
V. Souchère ◽  
P. Martin ◽  
C. Sebillotte ◽  
M.S. Castellazzi ◽  
...  

2012 ◽  
Vol 7 (5) ◽  
pp. 573-581 ◽  
Author(s):  
Subashisa Dutta ◽  
◽  
Shyamal Ghosh

Being the highest specific discharge river in the world, the Brahmaputra has a large floodplain area of 700 km in length in its middle reaches falling in the high flood vulnerability category. Floods generated in upland Himalayan catchments are mainly controlled by land use and land cover, storm characteristics, and vegetation dynamics. Floods propagate through a floodplain region consisting of wetlands, paddy agriculture, and wide braided river reaches with natural constraint points (nodals) that make the reaches more vulnerable to flood hazards. In this study, a macroscale distributed hydrological model was used to obtain the flood characteristics of the reaches. A hydrological model with spatially distributed input parameters and meteorological data was simulated at (1 km × 1 km) spatial grids to estimate flood hydrographs at the main river and itsmajor tributaries. Aftermodel validation, “best guess” land use change scenarios were used to estimate potential changes in flood characteristics. Results show that at the middle reaches of the Brahmaputra, peak discharge increases by a maximum of 9% for land use change scenarios. The same model with bias-corrected climatological data from a regional climate model (RCM) simulation (PRECIS) was used to obtain future changes in flood generation and its propagation through the basin in the projected climatological scenario. Changes in flood characteristics with reference to the baseline period show that the average duration of flood waves will increase from 15.2 days in the baseline period (1961-1990) to 19.3 days in the future (2071-2100). Peak discharge will increase by an average of 21% in the future in the projected climate change scenario. After statistics on changes of flood characteristics in the projected climate change scenario (2071-2100) were obtained, a 2-dimensional hydrodynamic model was used to obtain flood inundation and velocity distribution on the floodplain. Distribution of velocity and inundation depth was spatially analyzed to obtain flood hazard zones in the projected climate change scenario. Results show that spatial variation in flood hazard zones will be significantly altered in the projected climate change scenario compared to land use/land cover changes.


2008 ◽  
Vol 32 (4) ◽  
pp. 363-377 ◽  
Author(s):  
Kristina A. Luus ◽  
Richard E.J. Kelly

The purpose of this paper is to analyse the following strategies used to assess productivity of vegetation: (1) measuring LAI and fPAR; (2) calculating band ratios representing soil and vegetation stresses; and (3) modelling net primary productivity. Amazonian site-specific challenges are addressed in relation to each of the approaches, and pertinent research gaps are delineated. Conclusions focus on the strengths and weaknesses of each approach, and describing optimal strategies for integrating the productivity of vegetation into future Amazonian land-use change research.


Sign in / Sign up

Export Citation Format

Share Document