scholarly journals CLINICAL СASE OF INFLUENZA A(H1N1) COMPLICATED WITH ACUTE DISSEMINATED ENCEPHALOMYELITIS

2018 ◽  
Vol 17 (3) ◽  
pp. 64-68
Author(s):  
L. N. Mazankova ◽  
T. A. Chebotareva ◽  
E. P. Koval ◽  
M. A. Antsupova ◽  
A. V. Belaya

The defeat of the central nervous system in influenza reflects the properties of both the pathogen itself and the complex pathogenetic mechanisms of the influenza infectious process.  Existing modern  theories do not fully explain the pathological conditions of influenza in the central nervous system, which is still accompanied by ambiguous clinical arguments about the direct cytopathic effect of the influenza virus on neural tissue with the development of encephalitis. Another rare complication of the flu is acute disseminated encephalomyelitis. The autoimmune mechanism of the development of this disease is universally recognized, despite the continuing difficulties of diagnosis in the absence of oligoclonal antibodies in blood plasma and spinal cerebral fluid in the majority of patients.

Author(s):  
I B Meier ◽  
C Vieira Ligo Teixeira ◽  
I Tarnanas ◽  
F Mirza ◽  
L Rajendran

Abstract Recent case studies show that the SARS-CoV-2 infectious disease, COVID-19, is associated with accelerated decline of mental health, in particular, cognition in elderly individuals, but also with neurological and neuropsychiatric illness in young people. Recent studies also show a bidirectional link between COVID-19 and mental health in that people with previous history of psychiatric illness have a higher risk for contracting COVID-19 and that COVID-19 patients display a variety of psychiatric illnesses. Risk factors and the response of the central nervous system to the virus show large overlaps with pathophysiological processes associated with Alzheimer’s disease, delirium, post-operative cognitive dysfunction and acute disseminated encephalomyelitis, all characterized by cognitive impairment. These similarities lead to the hypothesis that the neurological symptoms could arise from neuroinflammation and immune cell dysfunction both in the periphery as well as in the central nervous system and the assumption that long-term consequences of COVID-19 may lead to cognitive impairment in the well-being of the patient and thus in today’s workforce, resulting in large loss of productivity. Therefore, particular attention should be paid to neurological protection during treatment and recovery of COVID-19, while cognitive consequences may require monitoring.


2021 ◽  
pp. 106689692199356
Author(s):  
Fleur Cordier ◽  
Lars Velthof ◽  
David Creytens ◽  
Jo Van Dorpe

Acute disseminated encephalomyelitis (ADEM) is a rare immune-mediated inflammatory and demyelinating disorder of the central nervous system. Its characteristic perivenular demyelination and inflammation aid in the differential diagnosis with other inflammatory demyelinating diseases. Here, we present a clinical case of ADEM, summarize its histological hallmarks, and discuss pitfalls concerning the most important neuropathological differential diagnoses.


2017 ◽  
Vol 16 (03) ◽  
pp. 164-170
Author(s):  
Rachel Gottlieb-Smith ◽  
Amy Waldman

AbstractAcquired demyelinating syndromes (ADS) present with acute or subacute monofocal or polyfocal neurologic deficits localizing to the central nervous system. The clinical features of distinct ADS have been carefully characterized including optic neuritis, transverse myelitis, and acute disseminated encephalomyelitis. These disorders may all be monophasic disorders. Alternatively, optic neuritis, partial transverse myelitis, and acute disseminated encephalomyelitis may be first presentations of a relapsing or polyphasic neuroinflammatory disorder, such as multiple sclerosis or neuromyelitis optica. The clinical features of these disorders and the differential diagnosis are discussed in this article.


2021 ◽  
Vol 15 ◽  
Author(s):  
Davide Marangon ◽  
Nicolò Caporale ◽  
Marta Boccazzi ◽  
Maria P. Abbracchio ◽  
Giuseppe Testa ◽  
...  

Myelin is the lipidic insulating structure enwrapping axons and allowing fast saltatory nerve conduction. In the central nervous system, myelin sheath is the result of the complex packaging of multilamellar extensions of oligodendrocyte (OL) membranes. Before reaching myelinating capabilities, OLs undergo a very precise program of differentiation and maturation that starts from OL precursor cells (OPCs). In the last 20 years, the biology of OPCs and their behavior under pathological conditions have been studied through several experimental models. When co-cultured with neurons, OPCs undergo terminal maturation and produce myelin tracts around axons, allowing to investigate myelination in response to exogenous stimuli in a very simple in vitro system. On the other hand, in vivo models more closely reproducing some of the features of human pathophysiology enabled to assess the consequences of demyelination and the molecular mechanisms of remyelination, and they are often used to validate the effect of pharmacological agents. However, they are very complex, and not suitable for large scale drug discovery screening. Recent advances in cell reprogramming, biophysics and bioengineering have allowed impressive improvements in the methodological approaches to study brain physiology and myelination. Rat and mouse OPCs can be replaced by human OPCs obtained by induced pluripotent stem cells (iPSCs) derived from healthy or diseased individuals, thus offering unprecedented possibilities for personalized disease modeling and treatment. OPCs and neural cells can be also artificially assembled, using 3D-printed culture chambers and biomaterial scaffolds, which allow modeling cell-to-cell interactions in a highly controlled manner. Interestingly, scaffold stiffness can be adopted to reproduce the mechanosensory properties assumed by tissues in physiological or pathological conditions. Moreover, the recent development of iPSC-derived 3D brain cultures, called organoids, has made it possible to study key aspects of embryonic brain development, such as neuronal differentiation, maturation and network formation in temporal dynamics that are inaccessible to traditional in vitro cultures. Despite the huge potential of organoids, their application to myelination studies is still in its infancy. In this review, we shall summarize the novel most relevant experimental approaches and their implications for the identification of remyelinating agents for human diseases such as multiple sclerosis.


2021 ◽  
Vol 40 (4) ◽  
pp. 33-42
Author(s):  
Igor V. Litvinenko ◽  
Miroslav M. Odinak ◽  
Nikolay V. Tsygan ◽  
Aleksander V. Ryabtsev

The central nervous system seems to be quite vulnerable to SARS-CoV-2, leading to a variety of alteration pathways, high incidence and variability of the neurological symptoms of COVID-19. The COVID-19 symptoms, possibly associated with alteration to the central nervous system, include hyperthermia, shortness of breath, fatigue, headache, dizziness, dysphonia, dysphagia, hyposmia and anosmia, hypogeusia and ageusia, impairment of consciousness. The impairment of olfaction and gustation are the most common symptoms of the nervous system alteration (98% and 70%, respectively), which is most likely a consequence of the alteration of the receptors. Presumably the pathogenesis of dysphonia and dysphagia may involve neurodegenerative mechanisms or may be associated with a predominantly demyelinating alteration of the caudal cranial nerves. Pathomorphological findings in the brain of the COVID-19 patients include diffuse hypoxic and focal ischemic injuries of various sizes up to ischemic infarctions (in thrombosis of large arteries); microangiopathy; vasculitis; diapedetic and confluent hemorrhages with possible progression to hemorrhagic infarctions and rarely intracerebral hematomas. Acute cerebrovascular accident worsens the course of COVID-19 and can worsen the clinical outcome, taking into account the mechanisms of the central nervous system alteration in highly contagious coronavirus infections (SARS-CoV, MERS, SARS-CoV-2), including embolism, hypoxia, neurodegeneration, systemic inflammatory response and immune-mediated alteartion to the nervous tissue. A fairly rare complication of coronavirus infection, however, acute myelitis requires attention due to the severity of neurological disorders. The literature data show high incidence and polymorphism of the symptoms of the central nervous system alteration, as well as the important role of the cerebrovascular and neurodegenerative pathogenesis of brain alteration in COVID-19, which is taken into account in examining and treating the patients with new coronavirus infection. (1 figure, bibliography: 61 refs)


2012 ◽  
Vol 27 (11) ◽  
pp. 1408-1425 ◽  
Author(s):  
Gulay Alper

Acute disseminated encephalomyelitis is an immune-mediated inflammatory and demyelinating disorder of the central nervous system, commonly preceded by an infection. It principally involves the white matter tracts of the cerebral hemispheres, brainstem, optic nerves, and spinal cord. Acute disseminated encephalomyelitis mainly affects children. Clinically, patients present with multifocal neurologic abnormalities reflecting the widespread involvement in central nervous system. Cerebrospinal fluid may be normal or may show a mild pleocytosis with or without elevated protein levels. Magnetic resonance image (MRI) shows multiple demyelinating lesions. The diagnosis of acute disseminated encephalomyelitis requires both multifocal involvement and encephalopathy by consensus criteria. Acute disseminated encephalomyelitis typically has a monophasic course with a favorable prognosis. Multiphasic forms have been reported, resulting in diagnostic difficulties in distinguishing these cases from multiple sclerosis. In addition, many inflammatory disorders may have a similar presentation with frequent occurrence of encephalopathy and should be considered in the differential diagnosis of acute disseminated encephalomyelitis.


Author(s):  
Siddharthan Chandran ◽  
Alastair Compston

Clinicians suspect demyelination when episodes reflecting damage to white matter tracts within the central nervous system occur in young adults. The paucity of specific biological markers of discrete demyelinating syndromes places an emphasis on clinical phenotype—temporal and spatial patterns—when classifying demyelinating disorders. The diagnosis of multiple sclerosis, the most common demyelinating disorder, becomes probable when these symptoms and signs recur, involving different parts of the brain and spinal cord. Other important demyelinating diseases include post-infectious neurological disorders (acute disseminated encephalomyelitis), demyelination resulting from metabolic derangements (central pontine myelinosis), and inherited leucodystrophies that may present in children or in adults. Accepting differences in mechanism, presentation, and treatment, two observations can usefully be made when classifying demyelinating disorders. These are the presence or absence of inflammation, and the extent of focal vs. diffuse demyelination. Multiple sclerosis is prototypic for the former, whereas dysmyelinating disorders, such as leucodystrophies are representative of the latter....


2014 ◽  
Vol 9 (4) ◽  
pp. 55-58
Author(s):  
R Adhikari ◽  
A Tayal ◽  
PK Chhetri ◽  
B Pokhrel

The involvement of central nervous system in children with typhoid fever is common. Acute disseminated encephalomyelitis is a rare immune mediated and demyelinating disease of the central nervous system that usually affects children. We report a 7-year-old child with typhoid fever who developed acute cerebellar syndrome due to acute disseminated encephalomyelitis.Journal of College of Medical Sciences-Nepal, 2013, Vol-9, No-4, 55-58 DOI: http://dx.doi.org/10.3126/jcmsn.v9i4.10237


Sign in / Sign up

Export Citation Format

Share Document