scholarly journals Generating functions for generalization Simsek numbers and their applications

Author(s):  
Mouloud Goubi

Our perpose in this work is the complete the study of Simsek numbers. We give answer to some open problems concerning polynomial representations and associated generating function. At the end of the study we investigate a new generalization of these numbers and obtain useful identities which connect Simsek numbers and Stirling numbers of second kind.

Author(s):  
Waseem Khan ◽  
Idrees Ahmad Khan ◽  
Mehmet Acikgoz ◽  
Ugur Duran

In this paper, a new class of q-Hermite based Frobenius type Eulerian polynomials is introduced by means of generating function and series representation. Several fundamental formulas and recurrence relations for these polynomials are derived via different generating methods. Furthermore, diverse correlations including the q-Apostol-Bernoulli polynomials, the q-Apostol-Euler poynoomials, the q-Apostol-Genocchi polynomials and the q-Stirling numbers of the second kind are also established by means of the their generating functions.


Author(s):  
Feng Qi ◽  
Dongkyu Lim ◽  
Bai-Ni Guo

In the paper, the authors establish two identities, which can be regarded as nonlinear differential equations, for the generating function of Eulerian polynomials, find two identities for the Stirling numbers of the second kind, and present two identities for Eulerian polynomials and higher order Eulerian polynomials, pose two open problems about summability of two finite sums involving the Stirling numbers of the second kind. Some of these conclusions meaningfully and significantly simplify several known results.


2018 ◽  
Vol 12 (2) ◽  
pp. 467-480 ◽  
Author(s):  
Feng Qi ◽  
Dongkyu Lim ◽  
Bai-Ni Guo

In the paper, the authors establish two identities, which can be regarded as nonlinear differential equations, for the generating function of Eulerian polynomials, find two identities for the Stirling numbers of the second kind, present two identities for Eulerian polynomials and higher order Eulerian polynomials, and pose two open problems about summability of two finite sums involving the Stirling numbers of the second kind. Some of these conclusions meaningfully and significantly simplify several known results.


2019 ◽  
Vol 13 (2) ◽  
pp. 478-494 ◽  
Author(s):  
Irem Kucukoglu ◽  
Yilmaz Simsek

In this article, we examine a family of some special numbers and polynomials not only with their generating functions, but also with computation algorithms for these numbers and polynomials. By using these algorithms, we provide several values of these numbers and polynomials. Furthermore, some new identities, formulas and combinatorial sums are obtained by using relations derived from the functional equations of these generating functions. These identities and formulas include the Apostol-type numbers and polynomials, and also the Stirling numbers. Finally, we give further remarks and observations on the generating function including ?-Apostol-Daehee numbers, special numbers, and finite sums.


Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 309-320 ◽  
Author(s):  
B.S. El-Desouky ◽  
Nenad Cakic ◽  
F.A. Shiha

In this paper we give a new family of numbers, called ??-Whitney numbers, which gives generalization of many types of Whitney numbers and Stirling numbers. Some basic properties of these numbers such as recurrence relations, explicit formulas and generating functions are given. Finally many interesting special cases are derived.


Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4833-4844 ◽  
Author(s):  
Eda Yuluklu ◽  
Yilmaz Simsek ◽  
Takao Komatsu

The aim of this paper is to give some new identities and relations related to the some families of special numbers such as the Bernoulli numbers, the Euler numbers, the Stirling numbers of the first and second kinds, the central factorial numbers and also the numbers y1(n,k,?) and y2(n,k,?) which are given Simsek [31]. Our method is related to the functional equations of the generating functions and the fermionic and bosonic p-adic Volkenborn integral on Zp. Finally, we give remarks and comments on our results.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1161
Author(s):  
Hari Mohan Srivastava ◽  
Sama Arjika

Basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeometric functions and the basic (or q-) hypergeometric polynomials are studied extensively and widely due mainly to their potential for applications in many areas of mathematical and physical sciences. Here, in this paper, we introduce a general family of q-hypergeometric polynomials and investigate several q-series identities such as an extended generating function and a Srivastava-Agarwal type bilinear generating function for this family of q-hypergeometric polynomials. We give a transformational identity involving generating functions for the generalized q-hypergeometric polynomials which we have introduced here. We also point out relevant connections of the various q-results, which we investigate here, with those in several related earlier works on this subject. We conclude this paper by remarking that it will be a rather trivial and inconsequential exercise to give the so-called (p,q)-variations of the q-results, which we have investigated here, because the additional parameter p is obviously redundant.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Sunil Kumar Sharma ◽  
Waseem A. Khan ◽  
Serkan Araci ◽  
Sameh S. Ahmed

Abstract Recently, Kim and Kim (Russ. J. Math. Phys. 27(2):227–235, 2020) have studied new type degenerate Bernoulli numbers and polynomials by making use of degenerate logarithm. Motivated by (Kim and Kim in Russ. J. Math. Phys. 27(2):227–235, 2020), we consider a special class of polynomials, which we call a new type of degenerate Daehee numbers and polynomials of the second kind. By using their generating function, we derive some new relations including the degenerate Stirling numbers of the first and second kinds. Moreover, we introduce a new type of higher-order degenerate Daehee polynomials of the second kind. We also derive some new identities and properties of this type of polynomials.


2021 ◽  
Author(s):  
Shahriar Shahriari

Active student engagement is key to this classroom-tested combinatorics text, boasting 1200+ carefully designed problems, ten mini-projects, section warm-up problems, and chapter opening problems. The author – an award-winning teacher – writes in a conversational style, keeping the reader in mind on every page. Students will stay motivated through glimpses into current research trends and open problems as well as the history and global origins of the subject. All essential topics are covered, including Ramsey theory, enumerative combinatorics including Stirling numbers, partitions of integers, the inclusion-exclusion principle, generating functions, introductory graph theory, and partially ordered sets. Some significant results are presented as sets of guided problems, leading readers to discover them on their own. More than 140 problems have complete solutions and over 250 have hints in the back, making this book ideal for self-study. Ideal for a one semester upper undergraduate course, prerequisites include the calculus sequence and familiarity with proofs.


1997 ◽  
Vol 20 (4) ◽  
pp. 759-768 ◽  
Author(s):  
A. K. Agarwal ◽  
R. Balasubrananian

In this paper we study thosen-color partitions of Agarwal and Andrews, 1987, in which each pair of parts has weighted difference equal to−2Results obtained in this paper for these partitions include several combinatorial identities, recurrence relations, generating functions, relationships with the divisor function and computer produced tables. By using these partitions an explicit expression for the sum of the divisors of odd integers is given. It is shown how these partitions arise in the study of conjugate and self-conjugaten-color partitions. A combinatorial identity for self-conjugaten-color partitions is also obtained. We conclude by posing several open problems in the last section.


Sign in / Sign up

Export Citation Format

Share Document