scholarly journals CO2 reforming of CH4 over M(Ca, Ba, Sr)xLa1-xNiO3 perovskites used as coke resistant catalyst precursor

Author(s):  
Ana Carolina Trevisani Souza ◽  
Marcelo da Silva Batista

Methane (CH4) and carbon dioxide (CO2) are greenhouse gases that have been converted into synthesis gas for the production of oxygenated chemicals and hydrocarbons. In this paper, M(Ca, Ba, Sr)xLa1-xNiO3 (x=0.0, 0.3 and 0.5) doped perovskites were successfully synthesized as catalyst precursors aiming at high catalytic activity and stability in the CO2 reforming of methane. These perovskites were characterized by X-ray diffraction (XRD), temperature programmed reduction by H2 (H2-TPR) and O2-temperature programmed oxidation (TPO). Its activity and carbon suppression were investigated in the CO2 reforming of methane. Results showed formation of perovskite structure, but La2NiO4 spinel and NiO were also detected in doped perovskites. The Ca, Ba and Sr partial substitution has evident influence on the reduction behavior of perovskites. All the doped perovskites used as catalyst precursors had better catalytic performance than LaNiO3. However, increasing the doping content decreased activity. Among doped perovskites, Ca0.3La0.7NiO3 showed better catalytic performance for the methane reforming reaction.

Author(s):  
Djamila Sellam ◽  
Kahina Ikkour ◽  
Sadia Dekkar ◽  
Hassiba Messaoudi ◽  
Taous Belaid ◽  
...  

The study presents the dry reforming of methane using natural Kaolin silica as catalyst support. The silica-supported LaNiO3 perovskite catalysts (20LaNiO3/SiO2 and 40LaNiO3/SiO2) and bulk LaNiO3 catalyst were synthesized by auto-combustion method. The resulting catalysts were characterized by X-ray diffraction (XRD), N2 adsorption - desorption isotherm measurement,  scanning electron microscopy (SEM) and temperature-programmed reduction (TPR). After reduction at 700 °C, they were used as catalysts for the reaction of dry reforming of methane into synthesis gas at atmospheric pressure at 800 °C. The reduced 40LaNiO3/SiO2 exhibited high catalytic activity. This result was attributed to the small Ni metallic particles obtained from the reduced perovskite highly dispersed on the support and the good reducibility. The increase of reduction temperature at 800 °C resulted in a further enhancement of the catalytic performance of 40LaNiO3/SiO2 catalyst. Copyright © 2019 BCREC Group. All rights reserved 


2021 ◽  
Vol 10 (1) ◽  
pp. 104-108
Author(s):  
Phuong Phan Hong ◽  
Anh Nguyen Phung ◽  
Huy Tran Anh ◽  
Tri Nguyen ◽  
Loc Luu Cam

A series of 10%wtNiO/CeO2-nanorod catalyst without and with Cr2O3 additive was prepared by simultaneous impregnation method. Several techniques, including N2 physisorption measurements, X-ray powder diffraction (XRD), temperature-programmed reduction using H2 (H2-TPR), CO2 temperature-programmed desorption (CO2-TPD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) were used to investigate catalysts’ physico-chemical properties. The activity of the catalysts in combined steam and CO2 reforming of CH4 (BRM) was investigated at temperature range of 550-800 °C. The results showed that 10%NiO0.1%Cr2O3/CeO2 catalyst had the best catalytic performance due to a better reducibility and basicity. At 700 °C and CH4:CO2:H2O molar ratio in feed stream of 3:1.2:2.4, both conversion of CH4 and CO2 on this catalyst reached 98.5%.


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1240
Author(s):  
Faris A. J. Al-Doghachi ◽  
Ali F. A. Jassim ◽  
Yun Hin Taufiq-Yap

Catalysts Ni/Mg1−xCex4+O and Ni,Pd,Pt/Mg1−xCex4+O were developed using the co-precipitation–impregnation methods. Catalyst characterization took place using XRD, H2-TPR, XRF, XPS, Brunauer–Emmett–Teller (BET), TGA TEM, and FE-SEM. Testing the catalysts for the dry reforming of CH4 took place at temperatures of 700–900 °C. Findings from this study revealed a higher CH4 and CO2 conversion using the tri-metallic Ni,Pd,Pt/Mg1−xCex4+O catalyst in comparison with Ni monometallic systems in the whole temperature ranges. The catalyst Ni,Pd,Pt/Mg0.85Ce4+0.15O also reported an elevated activity level (CH4; 78%, and CO2; 90%) and an outstanding stability. Carbon deposition on spent catalysts was analyzed using TEM and Temperature programmed oxidation-mass spectroscopy (TPO-MS) following 200 h under an oxygen stream. The TEM and TPO-MS analysis results indicated a better anti-coking activity of the reduced catalyst along with a minimal concentration of platinum and palladium metals.


Author(s):  
Loc Cam Luu ◽  
Tri Nguyen ◽  
Cuong Tien Hoang ◽  
Tien Trong Nguyen ◽  
Minh Hoang Phan ◽  
...  

Effectively using CO2-containing natural gas is an urgent requirement in Vietnam. Therefore, producing hydrogen and syngas by dry reforming of methane (СН4+СО2 = 2Н2+2СО) has gained renewed interest in recent years. In this paper, Ni/α- Al2O3 and Ni-Mg/α-Al2O3 catalysts were prepared by impregnation. Physico-chemical characteristics of catalysts were investigated via nitrogen physisorption (BET), X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Temperature Programmed Reduction (TPR) methods. The activities of catalysts in CO2 reforming of CH4 were studied in a micro-flow reactor in the temperature range 550 –800oC, and content of CH4 and CO2 of 3 % mol. It was found that the conversion of CH4 and CO2 remarkably increased with the increase of reaction temperature from 550 to 700oC, but increased inconsiderably when the temperature reached more than 700oC. The selectivities of CO and H2 reached over 91 %. The modification of Ni/α- Al2O3 catalyst with Mg led to reduce the NiO particle size forme the new ZnO-MgO solid solution and increase the reductivity of catalyst. These improve the activity, selectivity and stability of catalyst. At the reaction temperature of 700oC, the conversions of CH4 and CO2 on Ni-Mg/α-Al2O3 reached 88.5 % and 72.3 %, respectively. The activities of catalysts were stable for 30 hours of reaction. Moreover, the role of Mg in the resistance to the coke formation on the catalyst surface was clarified via the results of temperature programmed oxidation (TPO) of spent catalysts after running the reaction for 30 hours at 700oC


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1450
Author(s):  
Nichthima Dharmasaroja ◽  
Tanakorn Ratana ◽  
Sabaithip Tungkamani ◽  
Thana Sornchamni ◽  
David S. A. Simakov ◽  
...  

In this paper, the 10 wt% Ni/Al2O3-MgO (10Ni/MA), 5 wt% Ni-5 wt% Ce/Al2O3-MgO (5Ni5Ce/MA), and 5 wt% Ni-5 wt% Co/Al2O3-MgO (5Ni5Co/MA) catalysts were prepared by an impregnation method. The effects of CeO2 and Co doping on the physicochemical properties of the Ni/Al2O3-MgO catalyst were comprehensively studied by N2 adsorption-desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), H2 temperature programmed reduction (H2-TPR), CO2 temperature programmed reduction (CO2-TPD), and thermogravimetric analysis (TGA). The effects on catalytic performance for the combined steam and CO2 reforming of methane with the low steam-to-carbon ratio (S/C ratio) were evaluated at 620 °C under atmospheric pressure. The appearance of CeO2 and Co enhanced the oxygen species at the surface that decreased the coke deposits from 17% for the Ni/MA catalyst to 11–12% for the 5Ni5Ce/MA and 5Ni5Co/MA catalysts. The oxygen vacancies in the 5Ni5Ce/MA catalyst promoted water activation and dissociation, producing surface oxygen with a relatively high H2/CO ratio (1.6). With the relatively low H2/CO ratio (1.3), the oxygen species at the surface was enhanced by CO2 activation-dissociation via the redox potential in the 5Ni5Co/MA catalyst. The improvement of H2O and CO2 dissociative adsorption allowed the 5Ni5Ce/MA and 5Ni5Co/MA catalysts to resist the carbon formation, requiring only a low amount of steam to be added.


2013 ◽  
Vol 38 (31) ◽  
pp. 13649-13654 ◽  
Author(s):  
Dae-Woon Jeong ◽  
Won-Jun Jang ◽  
Jae-Oh Shim ◽  
Hyun-Seog Roh ◽  
In Hyuk Son ◽  
...  

2016 ◽  
Vol 78 (8-3) ◽  
Author(s):  
Siti Munirah Sidik ◽  
Aishah Abdul Jalil ◽  
Sugeng Triwahyono ◽  
Umi Aisah Asli

A series of Ni incorporated Mesostructured Silica Nanoparticles (MSN) were prepared by physical mixing method. Electrolyzed nickel oxide was used as the Ni precursor. The N2 adsorption-desorption and X-Ray diffraction (XRD) analyses evidenced that the increase in Ni loading decreased the surface area and crystallinity, and increased Ni particle size in the catalyst, respectively. The activity of CO2 reforming of CH4 followed the order of 10Ni/MSN > 15Ni/MSN > 5Ni/MSN > MSN. The highest activity was achieved by 10Ni/MSN with the CH4 and CO2 conversion of 63.4% and 87.2 %, respectively. The results indicated that the presence of a suitable Ni amount in MSN was beneficial to achieve high catalytic activity due to its effect on the amount of active metal sites available for the reaction. Thus, the electrolyzed nickel oxide precursor and Ni/MSN catalyst prepared by electrochemical method and physical mixing synthesis has a potential to be utilized in CO2 reforming of CH4.


2006 ◽  
Vol 45 ◽  
pp. 2105-2109
Author(s):  
Makoto Nagashima ◽  
Daisuke Hirabayashi ◽  
Kenzi Suzuki

Oxygen radicals occlusion / release behavior of nanoporous aluminosilicate, Ca12Al14-XSiXO33+0.5X (0≦X≦4), synthesized under different condition was examined by the temperature programmed reduction (TPR) in an atmosphere of hydrogen in the temperature range of 200-1000°C and temperature programmed oxidation (TPO) measurement at 800°C. From the TPR results of Ca12Al14O33 (X=0) and Ca12Al10Si4O35 (X=4), it was found that there were three oxygen release peaks, denoted as α, β and γ, on each sample and the peaks appeared in the temperature range 300-420°C, 420-600°C, and 600-750°C, respectively. The oxygen contents of α and γ of samples were almost the same. However, the oxygen content of β in the sample with x = 4 was much larger, almost double, compared to that in x = 0. From the TPR, TPO results and catalytic performance, it was concluded that the oxygen content of β peak strongly influenced the catalytic activity of the nanoporous aluminosilicate in the propylene combustion.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Lucia M. Petkovic ◽  
Daniel M. Ginosar

Catalytic performance of Mo/HZSM5 and Ru-Mo/HZSM5 catalysts prepared by vaporization-deposition of molybdenum trioxide and impregnation with ammonium heptamolybdate was analyzed in terms of catalyst activity and selectivity, nitrogen physisorption analyses, temperature-programmed oxidation of carbonaceous residues, and temperature-programmed reduction. Vaporization-deposition rendered the catalyst more selective to ethylene and coke than the catalyst prepared by impregnation. This result was assigned to lower interaction of molybdenum carbide with the zeolite acidic sites.


Sign in / Sign up

Export Citation Format

Share Document