Journal of Fuels
Latest Publications


TOTAL DOCUMENTS

24
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

Published By Hindawi Limited

2314-601x, 2356-7392

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Stuart Wilkinson ◽  
Katherine A. Smart ◽  
David J. Cook

For the production of bioethanol from lignocellulosic biomass, it is important to optimise the thermochemical pretreatment which is required to facilitate subsequent liberation of monomeric sugars. Here, we report optimisation of pretreatment conditions for brewers spent grains (BSG) with the main objectives of (1) working at commercially relevant high solids content, (2) minimising energy and chemical inputs, and (3) maximising downstream sugar yields. Studies indicated there to be a play-off between pretreatment solids content, the usage of an acid catalyst, and pretreatment temperature. For example, yields of 80–90% theoretical glucose could be obtained following pretreatment at 35% w/v solids and 200°C, or at 140–160°C with addition of 1% HCl. However, at very high solids loadings (40–50% w/v) temperatures of 180–200°C were necessary to attain comparable sugar yields, even with an acid catalyst. The feasibility of producing bioethanol from feedstocks generated using these protocols was demonstrated (but not optimised) at laboratory scale.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yuanchen Zhu ◽  
André Y. Tremblay ◽  
Glenn A. Facey ◽  
Marten Ternan

The performance of a direct hydrocarbon phosphoric acid fuel cell, PAFC, was investigated using petroleum diesel, biodiesel, and n-hexadecane as the fuels. We believe this is the first study of a fuel cell being operated with petroleum diesel as the fuel at the anode. Degradation in fuel cell performance was observed prior to reaching steady state. The degradation was attributed to a carbonaceous material forming on the surface of the anode. Regardless of the initial degradation, a steady-state operation was achieved with each of the diesel fuels. After treating the anode with water the fuel cell performance recovered. However, the fuel cell performance degraded again prior to obtaining another steady-state operation. There were several observations that were consistent with the suggestion that the carbonaceous material formed from the diesel fuels might be a reaction intermediate necessary for steady-state operation. Finally, the experiments indicated that water in the phosphoric acid electrolyte could be used as the water required for the anodic reaction. The water formed at the cathode could provide the replacement water for the electrolyte, thereby eliminating the need to provide a water feed system for the fuel cell.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Mingqing Wu ◽  
Chunyan Chang ◽  
Tao Li ◽  
Jian Zhou ◽  
Liping Zhao

A study is carried out on chemical constitution of sulfur compounds in MTBE and their formation mechanisms. These sulfur compounds are classified into three types: common sulfur compounds, newly formed sulfur compounds, and high boiling sulfur compounds. Common sulfur compounds which include mercaptans, low molecule sulfides and disulfides, are directly from C4, one of the stocks for production of MTBE. The newly formed sulfur compounds, with one sulfur atom and five or more total carbon atoms in one molecule, are mainly tert-butyl methyl sulfide and tert-butyl ethyl sulfide, thioetherification products of thiols with butenes. Many high boiling sulfur compounds, including polysulfides such as dimethyl trisulfide, multisulfur heterocyclic compounds such as 3,5-dimethyl-1,2,4-trithiolane, and oxygen-containing sulfur compounds such as 2-methoxy-3-methylthio-butane, are also found newly formed in the processes of LPG refining and succedent etherification reaction for producing MTBE. Polysulfides are additional products of elemental sulfur to disulfides, and other high boiling sulfur compounds may be formed by thiols reacting with dienes.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yuanchen Zhu ◽  
Travis Robinson ◽  
Amani Al-Othman ◽  
André Y. Tremblay ◽  
Marten Ternan

The objective of this work was to examine fuel cells as a possible alternative to the diesel fuel engines currently used in railway locomotives, thereby decreasing air emissions from the railway transportation sector. We have investigated the performance of a phosphoric acid fuel cell (PAFC) reactor, with n-hexadecane, C16H34 (a model compound for diesel fuel, cetane number = 100). This is the first extensive study reported in the literature in which n-hexadecane is used directly as the fuel. Measurements were made to obtain both polarization curves and time-on-stream results. Because deactivation was observed hydrogen polarization curves were measured before and after n-hexadecane experiments, to determine the extent of deactivation of the membrane electrode assembly (MEA). By feeding water-only (no fuel) to the fuel cell anode the deactivated MEAs could be regenerated. One set of fuel cell operating conditions that produced a steady-state was identified. Identification of steady-state conditions is significant because it demonstrates that stable fuel cell operation is technically feasible when operating a PAFC with n-hexadecane fuel.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
S. de Goede ◽  
C. Wilken ◽  
M. Ajam ◽  
P. Roets ◽  
P. Engelbrecht ◽  
...  

In 2012, a new specification for synthetic fuels containing up to 7% biodiesel (FAME) was approved (CEN TS 15940). This specification allows the sale of neat paraffinic diesel, such as Gas-to-Liquids (GTL) diesel, to captive fleets in Europe. Several aspects are important in the final end-use application, including the stability of the fuel. The current study evaluated the stability of neat GTL diesel and FAME/paraffinic fuel blends via standard laboratory stability tests commonly used to study petroleum-derived fuels. The stability of GTL diesel, containing biodiesel, was evaluated using the Rancimat, PetroOxy, and ASTMD2274 tests. Selected samples were also evaluated using ASTM D5304. The Rancimat results indicated that FAME/GTL diesel blends performed similar to the FAME/petroleum derived fuel blends. In the PetroOxy test, the addition of more than 2 v/v% of a highly stable FAME resulted in an unexpected boost in the stability of the FAME/GTL diesel blend. The ASTM D2274 results were generally insensitive to the addition of FAME. The correlation between the PetroOxy and Rancimant tests was evaluated and found to be base fuel dependent. From this study it was concluded that GTL diesel (in blends with FAME) performed similar to petroleum-derived reference fuels in standard laboratory stability.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Gabriele Di Blasio ◽  
Mauro Viscardi ◽  
Carlo Beatrice

In recent years, alcoholic fuels have been considered as an alternative transportation biofuel even in compression ignition engines either as blended in diesel or as premixed fuel in the case of dual-fuel configuration. Within this framework, the authors investigated the possibility to improve the combustion efficiency when ethanol is used in a dual-fuel light duty diesel engine. In particular, the study was focused on reducing the HC and CO emissions at low load conditions, acting on the most influential engine calibration parameters. Since this kind of investigation would require a significant number of runs, the statistical design of experiment methodology was adopted to reduce significantly its number. As required by the DoE approach, a set of factors (injection parameters, etc.) were selected. For each of them, two levels “high” and “low” were defined in a range of reasonable values. Combining the levels of all the factors, it was possible to evaluate the effects and the weight of each factor and of their combination on the outputs. The results identified the rail pressure, the pilot, and post-injection as the most influential emission parameters. Significant reductions of unburnt were found acting on those parameters without substantial penalties on the global engine performances.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Ruijun Chen

To effectively and efficiently remove water contamination dispersed in petrodiesel fuels, a new water removal element with both coalescence and separation features is studied in this paper. The unique droplet coalescence and separation mechanism occurring in the new water removal element is proposed. The conceptual design of this filter element is presented and the basic features of FCP filtration systems are briefly introduced. A laboratory test stand and fuel analysis procedure are described. The results from preliminary water removal tests with number 2 petrodiesel fuel demonstrate the filtration performance of the new water removal element. For example, within one single fuel flow pass through FCP filtration system equipped with the new water removal element and running at 2 GPM flow rate, the water content in 80°F, number 2 petrodiesel fuel stream can be reduced from up to 40,000 ppm upstream to 64.8 ppm or less downstream.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Abebe K. Endalew ◽  
Yohannes Kiros

Metal catalysts for transesterification of vegetable oils can cause autoxidation side reactions which reduces the fuel quality of the biodiesel. On the other side, oxidation of highly unsaturated oils can open opportunities for the synthesis of other important renewable chemical products. This study reports catalytic oxidation of fatty acids of Jatropha curcas oil (JCO) by Li-CaO/Fe2(SO4)3 catalyst during transesterification at mild reaction conditions. The catalytic oxidation of the triglycerides was shown to be enhanced by the presence of lithium incorporated in the otherwise active catalyst combination of CaO/Fe2(SO4)3 used for high conversion into FAME. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to assess the reaction products.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Afshin Pedram Pourhashemi ◽  
S. M. Mehdi Ansarey Movahed ◽  
Masoud Shariat Panahi

In spite of occasional criticism they have attracted, hybrid vehicles (HVs) have been warmly welcomed by industry and academia alike. The key advantages of an HV, including fuel economy and environment friendliness, however, depend greatly on its energy management strategy and the way its design parameters are “tuned.” The optimal design and sizing of the HV remain a challenge for the engineering community, due to the variety of criteria and especially dynamic measures related to nature of its working conditions. This paper proposes an optimal design scheme that begins with presenting an energy management strategy based on minimum fuel consumption in finite driving cycle horizon. The strategy utilizes a dynamic programming approach and is consistent with charge sustenance. The sensitivity of the vehicle’s performance metrics to multiple design parameters is then studied using a design of experiments (DOE) methodology. The proposed scheme provides the designer with a reliable tool for investigating various design scenarios and achieving the optimal one.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Foluso O. Agunbiade ◽  
Tolulope A. Adewole

The future of fossil fuel sources of energy has necessitated the need to search for renewable alternatives. Thus, Carica papaya seed oil (CPSO) was employed as feedstock for the production of biodiesel by methanolysis. The seed was obtained locally, dried, and extracted with n-hexane. The CPSO was analyzed for specific gravity, viscosity, iodine value, and saponification value, among others using standard methods. The oil was transesterified by two-stage catalysis with oil to methanol mole ratio of 1 : 9. The biodiesel produced was subjected to standard fuel tests. The seed has an oil yield of 31.2% which is commercially viable. The kinematic viscosity of the oil at 313 K was 27.4 mm2s−1 while that of Carica papaya oil methylester (CPOME) was reduced to 3.57 mm2s−1 and the specific gravity was 0.84 comparable with other seed-oil biodiesels and number 2 diesel. Other oil properties were compared favourably with seed oils already documented for biodiesel synthesis. CPOME’s cloud and pour points were 275 K and 274 K, respectively, and relatively higher than other biodiesels and number 2 diesel. CPOME exhibits moderate corrosion of copper strip. The methanolysis improved the fuel properties of the CPOME similar to other biodiesels. CPSO therefore exhibits a potential for biodiesel production.


Sign in / Sign up

Export Citation Format

Share Document