scholarly journals Development of custom notation for XML-based language: A model-driven approach

2017 ◽  
Vol 14 (3) ◽  
pp. 939-958 ◽  
Author(s):  
Sergej Chodarev ◽  
Jaroslav Porubän

In spite of its popularity, XML provides poor user experience and a lot of domain-specific languages can be improved by introducing custom, more humanfriendly notation. This paper presents an approach for design and development of the custom notation for existing XML-based language together with a translator between the new notation and XML. The approach supports iterative design of the language concrete syntax, allowing its modification based on users feedback. The translator is developed using a model-driven approach. It is based on explicit representation of language abstract syntax (metamodel) that can be augmented with mappings to both XML and the custom notation. We provide recommendations for application of the approach and demonstrate them on a case study of a language for definition of graphs.

Author(s):  
Mario Cervera ◽  
Manoli Albert ◽  
Victoria Torres ◽  
Vicente Pelechano

The Situational Method Engineering (SME) discipline emerged two decades ago to address the challenge of the in-house definition of software development methods and the construction of the corresponding supporting tools. Unfortunately, current SME approaches still have limitations that are hindering their adoption by industry. One of these limitations is that most approaches do not properly encompass two phases of the SME lifecycle, which refer to the method design and the method implementation. To address this limitation, this paper demonstrates how Model-Driven Development (MDD) techniques can contribute to successfully cover both phases. The proposal is illustrated by a real case study that is currently being used at the Valencian Regional Ministry of Infrastructure, Territory and Environment.


2009 ◽  
Vol 6 (1) ◽  
pp. 23-43 ◽  
Author(s):  
Nenad Krdzavac ◽  
Dragan Gasevic ◽  
Vladan Devedzic

This paper presents a method for implementing tableau algorithm for description logics (DLs). The architectures of the present DL reasoners such as RACER or FaCT were developed using programming languages as Java or LISP. The implementations are not based on original definition of the abstract syntax, but they require transformation of abstract syntax into concrete syntax implementation languages use. In order to address these issues, we propose the use of model-driven engineering principles for the development of a DL reasoner where a definition of a DL abstract syntax is provided by means of metamodels. The presented approach is based on the use of a MOF-based model repository and QVT-like transformations, which transform models compliant to the DL metamodel taken from the OMG's Ontology Definition Metamodel specification into models compliant to the Tableau metamodel defined in this paper. .


Author(s):  
Esther Guerra ◽  
Juan de Lara ◽  
Paloma Díaz

The goal of this work is to facilitate the task of integrating measurement and redesign tools in modelling environments for Domain Specific Visual Languages (DSVLs), reducing or eliminating the necessity of coding. With this purpose, we have created a DSVL called SLAMMER that includes generalizations of some of the more used types of product metrics and frequent model manipulations, which can be easily customised for any other DSVL in a graphical way. The metric customisation process relies on visual patterns for the specification of the elements that should be measured in each metric type, while redesigns (as well as other actions) can be specified either personalizing generic templates or by means of graph transformation systems. The provided DSVL also allows creating new metrics, composing metrics, and executing actions guided by measurement values. The approach has been empirically validated by its implementation in a meta-modelling tool, which has been used for several DSVLs. In this way, together with the DSVL specification, a SLAMMER model can be provided containing a suite of metrics and actions that will become available in the final modelling environment. In this chapter we show a case study for a notation in the web engineering domain. As ensuring model quality is a key success factor in many computer science areas, even crucial in model-driven development, we believe that the results of this work benefit all of them by providing automatic support for the specification, generation and integration of measurement and redesign tools with modelling environments.


Author(s):  
Lisane Brisolara de Brisolara ◽  
Marcio Eduardo Kreutz ◽  
Luigi Carro

This chapter covers the use of UML as a modeling language for embedded systems design. It introduces the UML language, presenting the history of its definition, its main diagrams and characteristics. Using a case study, we show that using the standard UML with its limitations one is not able to model many important characteristics of embedded systems. For that reason, UML provides extension mechanisms that enable one to extend the language for a given domain, through the definition of profiles covering domain-specific applications. Several profiles have been proposed for the embedded systems domain, and some of those that have been standardized by OMG are presented here. A case study is also used to present MARTE, a new profile specifically proposed for the embedded system domain, enabling designers to model aspects like performance and schedulability. This chapter also presents a discussion about the effort to generate code from UML diagrams and analyses the open issues to the successful use of UML in the whole embedded system design flow.


Author(s):  
Andre´s Felipe Melo ◽  
P. John Clarkson

This paper describes a computational model that provides planning information useful for scheduling the design process. The model aims to reduce uncertainty in the design process and with it the risk of rework. The view is taken that planning is concerned with choosing between alternative actions and action sequences, but not with resource allocation. The planning model is based on an explicit representation of the state of the design process, the definition of the design capabilities as a pool of tasks, and on the generation and selection of plans by evaluating their reliability. Classical decision theory is used for evaluating the plans: a state-action net is built and analyzed as a Markov decision process. The model produces plans based on qualified task dependencies. These plans can be used as a basis for manual and automated scheduling. In an example industrial case study, a reduction of over 30% in the expected rework was predicted.


Author(s):  
Marília Freire ◽  
Uirá Kulesza ◽  
Eduardo Aranha ◽  
Gustavo Nery ◽  
Daniel Costa ◽  
...  

The research about the formalization and conduction of controlled experiments in software engineering has reported important insights and guidelines for their organization. However, the computational support to formalize and execute controlled experiments still requires deeper investigation. In this context, this paper presents an empirical study that evaluates a domain-specific language (DSL) proposed to formalize controlled experiments in software engineering. The language is part of a model-driven approach that allows the generation of executable workflows for the experiment participants, according to the statistical design of the experiment. Our study involves the modeling of 16 software engineering experiments to analyze the completeness and expressiveness of the investigated DSL when specifying different controlled experiments. The results highlight several limitations of the DSL that affect the formalization and execution of experiments. These outcomes were used to extend and improve the evaluated DSL. Finally, the improved version of the language was used to model the same experiments in order to illustrate the benefits of the proposed improvements.


2014 ◽  
pp. 297-323
Author(s):  
Paolo Arcaini ◽  
Angelo Gargantini ◽  
Elvinia Riccobene ◽  
Patrizia Scandurra

Domain Specific Languages (DSLs) are often defined in terms of metamodels capturing the abstract syntax of the language. For a complete definition of a DSL, both syntactic and semantic aspects of the language have to be specified. Metamodeling environments support syntactic definition issues, but they do not provide any help in defining the semantics of metamodels, which is usually given in natural language. In this chapter, the authors present an approach to formally define the semantics of metamodel-based languages. It is based on a translational technique that hooks to the language metamodel its precise and executable semantics expressed in terms of the Abstract State Machine formal method. The chapter also shows how different techniques can be used for formal analysis of models (i.e., instance of the language metamodel). The authors exemplify the use of their approach on a language for Petri nets.


2009 ◽  
Vol 03 (01) ◽  
pp. 31-56 ◽  
Author(s):  
KAI CHEN ◽  
JOSEPH PORTER ◽  
JANOS SZTIPANOVITS ◽  
SANDEEP NEEMA

Domain-Specific Modeling Languages (DSMLs) play a fundamental role in the model-based design of embedded software and systems. While abstract syntax metamodeling enables the rapid and inexpensive development of DSMLs, the specification of DSML semantics is still a hard problem. In previous work, we have developed methods and tools for the semantic anchoring of DSMLs. Semantic anchoring introduces a set of reusable "semantic units" that provide reference semantics for basic behavioral categories using the Abstract State Machine framework. In this paper, we extend the semantic anchoring framework to heterogeneous behaviors by exploring methods for the composition of semantic units. Semantic unit composition reduces the required effort from DSML designers and improves the quality of the specification. The proposed method is demonstrated through a case study. Formal notions of compositionality are discussed as well as a brief comparison with similar research tools.


Sign in / Sign up

Export Citation Format

Share Document