scholarly journals Face recognition based on full convolutional neural network based on transfer learning model

Author(s):  
Zhongkui Fan ◽  
Ye-Peng Guan

Deep learning has achieved a great success in face recognition (FR), however, little work has been done to apply deep learning for face photo-sketch recognition. This paper proposes an adaptive scale local binary pattern extraction method for optical face features. The extracted features are classified by Gaussian process. The most authoritative optical face test set LFW is used to train the trained model. Test, the test accuracy is 98.7%. Finally, the face features extracted by this method and the face features extracted from the convolutional neural network method are adapted to sketch faces through transfer learning, and the results of the adaptation are compared and analyzed. Finally, the paper tested the open-source sketch face data set CUHK Face Sketch database(CUFS) using the multimedia experiment of the Chinese University of Hong Kong. The test result was 97.4%. The result was compared with the test results of traditional sketch face recognition methods. It was found that the method recognized High efficiency, it is worth promoting.


Author(s):  
Zhixian Chen ◽  
Jialin Tang ◽  
Xueyuan Gong ◽  
Qinglang Su

In order to improve the low accuracy of the face recognition methods in the case of e-health, this paper proposed a novel face recognition approach, which is based on convolutional neural network (CNN). In detail, through resolving the convolutional kernel, rectified linear unit (ReLU) activation function, dropout, and batch normalization, this novel approach reduces the number of parameters of the CNN model, improves the non-linearity of the CNN model, and alleviates overfitting of the CNN model. In these ways, the accuracy of face recognition is increased. In the experiments, the proposed approach is compared with principal component analysis (PCA) and support vector machine (SVM) on ORL, Cohn-Kanade, and extended Yale-B face recognition data set, and it proves that this approach is promising.



2020 ◽  
Vol 32 ◽  
pp. 03011
Author(s):  
Divya Kapil ◽  
Aishwarya Kamtam ◽  
Akhil Kedare ◽  
Smita Bharne

Surveillance systems are used for the monitoring the activities directly or indirectly. Most of the surveillance system uses the face recognition techniques to monitor the activities. This system builds the automated contemporary biometric surveillance system based on deep learning. The application of the system can be used in various ways. The face prints of the persons will be stored inside the database with relevant statistics and does the face recognition. When any unknown face is recognized then alarm will ring so one can alert the security systems and in addition actions will be taken. The system learns changes while detecting faces automatically using deep learning and gain correct accuracy in face recognition. A deep learning method including Convolutional Neural Network (CNN) is having great significance in the area of image processing. This system can be applicable to monitor the activities for the housing society premises.



2019 ◽  
Vol 8 (2S11) ◽  
pp. 2447-2451

Now-a-days face recognition plays a major role in identifying face of the specific person. There are different face recognition algorithms such as Eigenfaces algorithm, Local binary pattern histograms, Fisherfaces algorithm. All these algorithms face the problem of subject independence as well as translation, rotation, and scale invariance in the recognition of facial expression. In this study, the face recognition using neural network and convolutional neural network (CNN) techniques were utilized and implemented with the help of Python software 3.6.6. It is noticed that the test accuracy is improved against translation, rotation, and scale invariance in face recognition using CNN.



2019 ◽  
Vol 3 (3) ◽  
pp. 240 ◽  
Author(s):  
Yovi Pratama ◽  
Marrylinteri Istoningtyas ◽  
Errissya Rasywir

Measurement of facial similarity or checking similarity is done using features. The algorithm for describing the most up-to-date and best face features for generating features is Deep Convolutional Neural Network (DCNNs). Based on this, this study uses MTCNN (Multi-task Cascaded Convolutional Neural Network) as one variation of the DCNN method. In this research, we built a research system to test results with javascript. Given the many needs that are based on mobile or can be run on a smartphone. One of them is to support the absent feature that is used in a mobile manner such as the reporting system of sales and marketing performance or members of the police personnel who normally work on a mobile basis. From the results of the tests carried out automatically using several variation models testing the image of the Aberdeen dataset as many as 60 images from 30 different people used in the face recognition research system using MTCNN with influencing image parameters such as lighting variations, object position variations, then the position taken and expression face on the object image, the research system managed to do face recognition by 100%. Thus, true positive values are equal to the amount of data tested and zero negative true values.



Connectivity ◽  
2020 ◽  
Vol 148 (6) ◽  
Author(s):  
B. V. Shefkin ◽  
◽  
I. V. Krasyuk ◽  
V. O. Khomenchuk ◽  
K. P. Storchak ◽  
...  

TensorFlow is Google’s open-source machine learning and deep learning framework, which is convenient and flexible to build the current mainstream deep learning model. Convolutional neural network is a classical model of deep learning, the advantage lies in its powerful feature extraction capabilities of convolutional blocks. A neural network in the simplest case is a mathematical model consisting of several layers of elements that perform parallel calculations. Initially, such an architecture was created by analogy with the small computing elements of the human brain — neurons. The minimal computing elements of an artificial neural network are also called neurons. Neural networks typically consist of three or more layers: an input layer, a hidden layer (or layers), and an output layer. An important feature of the neural network is its ability to learn by example, this is called learning with a teacher. The neural network is trained on a large number of examples consisting of input-output pairs (corresponding to each other input and output). In object recognition problems, such a pair will be the input image and the corresponding label — the name of the object. Neural network learning is an iterative process that reduces the deviation of the network output from a given «teacher response» — a label that corresponds to a given image. This process consists of steps called epochs of learning (they are usually calculated in thousands), each of which is the adjustment of the «weights» of the neural network — the parameters of the hidden layers of the network. Upon completion of the learning process, the quality of the neural network is usually good enough to perform the task for which it was trained, although the optimal set of parameters that perfectly recognizes all the images, it is often impossible to choose. Based on the TensorFlow platform, a convolutional neural network model with two-convolution-layers was built. The model was trained and tested with the MNIST data set. The test accuracy rate could reach 99,15%, and compared with the rate of 98,69% with only one-convolution-layer model, which shows that the two-convolution-layers convolutional neural network model has a better ability of feature extraction and classification decision-making.



2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Young-Gon Kim ◽  
Sungchul Kim ◽  
Cristina Eunbee Cho ◽  
In Hye Song ◽  
Hee Jin Lee ◽  
...  

AbstractFast and accurate confirmation of metastasis on the frozen tissue section of intraoperative sentinel lymph node biopsy is an essential tool for critical surgical decisions. However, accurate diagnosis by pathologists is difficult within the time limitations. Training a robust and accurate deep learning model is also difficult owing to the limited number of frozen datasets with high quality labels. To overcome these issues, we validated the effectiveness of transfer learning from CAMELYON16 to improve performance of the convolutional neural network (CNN)-based classification model on our frozen dataset (N = 297) from Asan Medical Center (AMC). Among the 297 whole slide images (WSIs), 157 and 40 WSIs were used to train deep learning models with different dataset ratios at 2, 4, 8, 20, 40, and 100%. The remaining, i.e., 100 WSIs, were used to validate model performance in terms of patch- and slide-level classification. An additional 228 WSIs from Seoul National University Bundang Hospital (SNUBH) were used as an external validation. Three initial weights, i.e., scratch-based (random initialization), ImageNet-based, and CAMELYON16-based models were used to validate their effectiveness in external validation. In the patch-level classification results on the AMC dataset, CAMELYON16-based models trained with a small dataset (up to 40%, i.e., 62 WSIs) showed a significantly higher area under the curve (AUC) of 0.929 than those of the scratch- and ImageNet-based models at 0.897 and 0.919, respectively, while CAMELYON16-based and ImageNet-based models trained with 100% of the training dataset showed comparable AUCs at 0.944 and 0.943, respectively. For the external validation, CAMELYON16-based models showed higher AUCs than those of the scratch- and ImageNet-based models. Model performance for slide feasibility of the transfer learning to enhance model performance was validated in the case of frozen section datasets with limited numbers.



2018 ◽  
Vol 7 (3.34) ◽  
pp. 237
Author(s):  
R Aswini Priyanka ◽  
C Ashwitha ◽  
R Arun Chakravarthi ◽  
R Prakash

In scientific world, Face recognition becomes an important research topic. The face identification system is an application capable of verifying a human face from a live videos or digital images. One of the best methods is to compare the particular facial attributes of a person with the images and its database. It is widely used in biometrics and security systems. Back in old days, face identification was a challenging concept. Because of the variations in viewpoint and facial expression, the deep learning neural network came into the technology stack it’s been very easy to detect and recognize the faces. The efficiency has increased dramatically. In this paper, ORL database is about the ten images of forty people helps to evaluate our methodology. We use the concept of Back Propagation Neural Network (BPNN) in deep learning model is to recognize the faces and increase the efficiency of the model compared to previously existing face recognition models.   



2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Ahmed Jawad A. AlBdairi ◽  
Zhu Xiao ◽  
Mohammed Alghaili

The interest in face recognition studies has grown rapidly in the last decade. One of the most important problems in face recognition is the identification of ethnics of people. In this study, a new deep learning convolutional neural network is designed to create a new model that can recognize the ethnics of people through their facial features. The new dataset for ethnics of people consists of 3141 images collected from three different nationalities. To the best of our knowledge, this is the first image dataset collected for the ethnics of people and that dataset will be available for the research community. The new model was compared with two state-of-the-art models, VGG and Inception V3, and the validation accuracy was calculated for each convolutional neural network. The generated models have been tested through several images of people, and the results show that the best performance was achieved by our model with a verification accuracy of 96.9%.



2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Guangpeng Fan ◽  
Feixiang Chen ◽  
Danyu Chen ◽  
Yan Li ◽  
Yanqi Dong

In the geological survey, the recognition and classification of rock lithology are an important content. The recognition method based on rock thin section leads to long recognition period and high recognition cost, and the recognition accuracy cannot be guaranteed. Moreover, the above method cannot provide an effective solution in the field. As a communication device with multiple sensors, smartphones are carried by most geological survey workers. In this paper, a smartphone application based on the convolutional neural network is developed. In this application, the phone’s camera can be used to take photos of rocks. And the types and lithology of rocks can be quickly and accurately identified in a very short time. This paper proposed a method for quickly and accurately recognizing rock lithology in the field. Based on ShuffleNet, a lightweight convolutional neural network used in deep learning, combined with the transfer learning method, the recognition model of the rock image was established. The trained model was then deployed to the smartphone. A smartphone application for identifying rock lithology was designed and developed to verify its usability and accuracy. The research results showed that the accuracy of the recognition model in this paper was 97.65% on the verification data set of the PC. The accuracy of recognition on the test data set of the smartphone was 95.30%, among which the average recognition time of the single sheet was 786 milliseconds, the maximum value was 1,045 milliseconds, and the minimum value was 452 milliseconds. And the single-image accuracy above 96% accounted for 95% of the test data set. This paper presented a new solution for the rapid and accurate recognition of rock lithology in field geological surveys, which met the needs of geological survey personnel to quickly and accurately identify rock lithology in field operations.



2021 ◽  
Vol 9 ◽  
Author(s):  
Zechen Wang ◽  
Liangzhen Zheng ◽  
Yang Liu ◽  
Yuanyuan Qu ◽  
Yong-Qiang Li ◽  
...  

One key task in virtual screening is to accurately predict the binding affinity (△G) of protein-ligand complexes. Recently, deep learning (DL) has significantly increased the predicting accuracy of scoring functions due to the extraordinary ability of DL to extract useful features from raw data. Nevertheless, more efforts still need to be paid in many aspects, for the aim of increasing prediction accuracy and decreasing computational cost. In this study, we proposed a simple scoring function (called OnionNet-2) based on convolutional neural network to predict △G. The protein-ligand interactions are characterized by the number of contacts between protein residues and ligand atoms in multiple distance shells. Compared to published models, the efficacy of OnionNet-2 is demonstrated to be the best for two widely used datasets CASF-2016 and CASF-2013 benchmarks. The OnionNet-2 model was further verified by non-experimental decoy structures from docking program and the CSAR NRC-HiQ data set (a high-quality data set provided by CSAR), which showed great success. Thus, our study provides a simple but efficient scoring function for predicting protein-ligand binding free energy.



Sign in / Sign up

Export Citation Format

Share Document