scholarly journals Team and project composition in big physics experiments

2019 ◽  
Vol 30 (4) ◽  
pp. 535-542
Author(s):  
Slobodan Perovic

Identifying optimal ways of organizing exploration in particle physics mega-labs is a challenging task that requires a combination of case-based and formal epistemic approaches. Data-driven studies suggest that projects pursued by smaller master-teams (fewer members, fewer sub-teams) are substantially more efficient than larger ones across sciences, including experimental particle physics. Smaller teams also seem to make better project choices than larger, centralized teams. Yet the epistemic requirement of small, decentralized, and diverse teams contradicts the often emphasized and allegedly inescapable logic of discovery that forces physicists pursuing the fundamental levels of the physical world to perform centralized experiments in mega-labs at high energies. We explain, however, that this epistemic requirement could be met, since the nature of theoretical and physical constraints in high energy physics and the technological obstacles stemming from them turn out to be surprisingly open-ended.

2012 ◽  
Vol 58 (4) ◽  
pp. 327-334 ◽  
Author(s):  
Ryszard S. Romaniuk

Abstract Accelerator science and technology is one of a key enablers of the developments in the particle physics, photon physics, electronics and photonics, also applications in medicine and industry. The paper presents a digest of the research results in accelerators in Europe, shown during the third annual meeting of the EuCARD - European Coordination of Accelerator Research and Development. EuCARD concerns building of research infrastructure, including advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large extent, multichannel systems for metrological data acquisition, precision photonic networks for reference time distribution.


2017 ◽  
Vol 24 (03) ◽  
pp. 1740008 ◽  
Author(s):  
Beatrix C. Hiesmayr

Utilizing the GKLS master equation we show that the decay property of a particle can be straightforwardly incorporated. In standard particle physics the decay is often described by an efficient non-hermitian Hamiltonian, in accord with the seminal Wigner-Weisskopf approximation. We show that by enlarging the Hilbert space and defining specific GKLS operators we have attained a formalism with a hermitian Hamiltonian and probability conserving states. This proves that the Wigner-Weisskopf approximation is Markovian and completely positive. In addition, this formalism allows a straightforward generalization to many-particle decays. Last, but not least, some impacts of the GKLS master equation onto systems at high energies are reported, such as for neutral meson, neutrino and hyperon systems.


Author(s):  
Preeti Kumari ◽  
◽  
Kavita Lalwani ◽  
Ranjit Dalal ◽  
Ashutosh Bhardwaj ◽  
...  

2005 ◽  
Vol 20 (16) ◽  
pp. 3874-3876 ◽  
Author(s):  
B. Abbott ◽  
P. Baringer ◽  
T. Bolton ◽  
Z. Greenwood ◽  
E. Gregores ◽  
...  

The DØ experiment at Fermilab's Tevatron will record several petabytes of data over the next five years in pursuing the goals of understanding nature and searching for the origin of mass. Computing resources required to analyze these data far exceed capabilities of any one institution. Moreover, the widely scattered geographical distribution of DØ collaborators poses further serious difficulties for optimal use of human and computing resources. These difficulties will exacerbate in future high energy physics experiments, like the LHC. The computing grid has long been recognized as a solution to these problems. This technology is being made a more immediate reality to end users in DØ by developing a grid in the DØ Southern Analysis Region (DØSAR), DØSAR-Grid, using all available resources within it and a home-grown local task manager, McFarm. We will present the architecture in which the DØSAR-Grid is implemented, the use of technology and the functionality of the grid, and the experience from operating the grid in simulation, reprocessing and data analyses for a currently running HEP experiment.


2017 ◽  
Vol 12 (12) ◽  
pp. P12004-P12004 ◽  
Author(s):  
F. Arteche ◽  
C. Rivetta ◽  
M. Iglesias ◽  
I. Echeverria ◽  
A. Pradas ◽  
...  

1994 ◽  
Vol 348 ◽  
Author(s):  
E. Auffray ◽  
I. Dafinei ◽  
P. Lecoq ◽  
M. Schneegans

ABSTRACTCerium fluoride offers a reasonable compromise between parameters like the density, the light yield, the scintillation characteristics (particularly the decay time) and the radiation hardness, and is considered today as the best candidate for large electromagnetic calorimeters in future High Energy Physics experiments. Details on the performances of large crystals produced by different manufacturers all over the world and measured by the Crystal Clear collaboration will be shown and the usefulness of a good collaboration between the industry and the users will be highlighted by some examples on the light yield and radiation hardness improvement.


Sign in / Sign up

Export Citation Format

Share Document