scholarly journals On minimal faithful representations of a class of nilpotent lie algebras

Filomat ◽  
2021 ◽  
Vol 35 (5) ◽  
pp. 1671-1686
Author(s):  
María Alvarez ◽  
Nadina Rojas

In this work we consider 2-step nilradicals of parabolic subalgebras of the simple Lie algebra An and describe a new family of faithful nil-representations of the nilradicals na,c, a,c ? N. We obtain a sharp upper bound for the minimal dimension ?(na,c) and for several pairs (a,c) we obtain ?(na,c).

2007 ◽  
Vol 17 (03) ◽  
pp. 527-555 ◽  
Author(s):  
YOU'AN CAO ◽  
DEZHI JIANG ◽  
JUNYING WANG

Let L be a finite-dimensional complex simple Lie algebra, Lℤ be the ℤ-span of a Chevalley basis of L and LR = R⊗ℤLℤ be a Chevalley algebra of type L over a commutative ring R. Let [Formula: see text] be the nilpotent subalgebra of LR spanned by the root vectors associated with positive roots. The aim of this paper is to determine the automorphism group of [Formula: see text].


2002 ◽  
Vol 01 (04) ◽  
pp. 413-424 ◽  
Author(s):  
V. D. LYAKHOVSKY ◽  
M. E. SAMSONOV

The twist deformations for simple Lie algebras [Formula: see text] whose twisting elements ℱ are known explicitly are usually defined on the carrier subspace injected in the Borel subalgebra [Formula: see text]. We consider the case where the carrier of the twist intersects nontrivially with both [Formula: see text] and [Formula: see text]. The main element of the new deformation is the parabolic twist ℱ℘ whose carrier is the minimal parabolic subalgebra of simple Lie algebra [Formula: see text]. It has the structure of the algebra of two-dimensional motions, contains [Formula: see text] and intersects nontrivially with [Formula: see text]. The twist ℱ℘ is constructed as a composition of the extended jordanian twist [Formula: see text] and the factor [Formula: see text]. The latter can be considered as a special deformed version of the jordanian twist. The twisted costructure is found for [Formula: see text] and the corresponding universal ℛ-matrix is presented. The parabolic twist can be composed with certain types of chains of extended jordanian twists for algebras A2(n-1). The chains enlarged by the parabolic factor ℱ℘ perform the explicit quantization of the new set of classical r-matrices.


2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Michel Goze ◽  
Elisabeth Remm

AbstractThe classification of complex or real finite dimensional Lie algebras which are not semi simple is still in its early stages. For example, the nilpotent Lie algebras are classified only up to dimension 7. Moreover, to recognize a given Lie algebra in the classification list is not so easy. In this work, we propose a different approach to this problem. We determine families for some fixed invariants and the classification follows by a deformation process or a contraction process. We focus on the case of 2- and 3-step nilpotent Lie algebras. We describe in both cases a deformation cohomology for this type of algebras and the algebras which are rigid with respect to this cohomology. Other


2019 ◽  
Vol 30 (03) ◽  
pp. 451-466
Author(s):  
Dietrich Burde ◽  
Vsevolod Gubarev

We introduce post-associative algebra structures and study their relationship to post-Lie algebra structures, Rota–Baxter operators and decompositions of associative algebras and Lie algebras. We show several results on the existence of such structures. In particular, we prove that there exists no post-Lie algebra structure on a pair [Formula: see text], where [Formula: see text] is a simple Lie algebra and [Formula: see text] is a reductive Lie algebra, which is not isomorphic to [Formula: see text]. We also show that there is no post-associative algebra structure on a pair [Formula: see text] arising from a Rota–Baxter operator of [Formula: see text], where [Formula: see text] is a semisimple associative algebra and [Formula: see text] is not semisimple. The proofs use results on Rota–Baxter operators and decompositions of algebras.


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Wenjuan Xie ◽  
Quanqin Jin ◽  
Wende Liu

AbstractA Hom-structure on a Lie algebra (g,[,]) is a linear map σ W g σ g which satisfies the Hom-Jacobi identity: [σ(x), [y,z]] + [σ(y), [z,x]] + [σ(z),[x,y]] = 0 for all x; y; z ∈ g. A Hom-structure is referred to as multiplicative if it is also a Lie algebra homomorphism. This paper aims to determine explicitly all the Homstructures on the finite-dimensional semi-simple Lie algebras over an algebraically closed field of characteristic zero. As a Hom-structure on a Lie algebra is not necessarily a Lie algebra homomorphism, the method developed for multiplicative Hom-structures by Jin and Li in [J. Algebra 319 (2008): 1398–1408] does not work again in our case. The critical technique used in this paper, which is completely different from that in [J. Algebra 319 (2008): 1398– 1408], is that we characterize the Hom-structures on a semi-simple Lie algebra g by introducing certain reduction methods and using the software GAP. The results not only improve the earlier ones in [J. Algebra 319 (2008): 1398– 1408], but also correct an error in the conclusion for the 3-dimensional simple Lie algebra sl2. In particular, we find an interesting fact that all the Hom-structures on sl2 constitute a 6-dimensional Jordan algebra in the usual way.


2018 ◽  
Vol 18 (2) ◽  
pp. 237-263 ◽  
Author(s):  
Christian Autenried ◽  
Kenro Furutani ◽  
Irina Markina ◽  
Alexander Vasiľev

Abstract The metric approach to studying 2-step nilpotent Lie algebras by making use of non-degenerate scalar products is realised. We show that a 2-step nilpotent Lie algebra is isomorphic to its standard pseudo-metric form, that is a 2-step nilpotent Lie algebra endowed with some standard non-degenerate scalar product compatible with the Lie bracket. This choice of the standard pseudo-metric form allows us to study the isomorphism properties. If the elements of the centre of the standard pseudo-metric form constitute a Lie triple system of the pseudo-orthogonal Lie algebra, then the original 2-step nilpotent Lie algebra admits integer structure constants. Among particular applications we prove that pseudo H-type algebras have bases with rational structure constants, which implies that the corresponding pseudo H-type groups admit lattices.


2012 ◽  
Vol 11 (01) ◽  
pp. 1250001 ◽  
Author(s):  
ALI REZA SALEMKAR ◽  
SARA CHEHRAZI ◽  
SOMAIEH ALIZADEH NIRI

Given a maximal subalgebra M of a finite-dimensional Lie algebra L, a θ-pair for M is a pair (A, B) of subalgebras such that A ≰ M, B is an ideal of L contained in A ∩ M, and A/B includes properly no nonzero ideal of L/B. This is analogous to the concept of θ-pairs associated to maximal subgroups of a finite group, which has been studied by a number of authors. A θ-pair (A, B) for M is said to be maximal if M has no θ-pair (C, D) such that A < C. In this paper, we obtain some properties of maximal θ-pairs and use them to give some characterizations of solvable, supersolvable and nilpotent Lie algebras.


2018 ◽  
Vol 30 (1) ◽  
pp. 109-128 ◽  
Author(s):  
Leonardo Bagaglini ◽  
Marisa Fernández ◽  
Anna Fino

Abstract We show obstructions to the existence of a coclosed {\mathrm{G}_{2}} -structure on a Lie algebra {\mathfrak{g}} of dimension seven with non-trivial center. In particular, we prove that if there exists a Lie algebra epimorphism from {\mathfrak{g}} to a six-dimensional Lie algebra {\mathfrak{h}} , with the kernel contained in the center of {\mathfrak{g}} , then any coclosed {\mathrm{G}_{2}} -structure on {\mathfrak{g}} induces a closed and stable three form on {\mathfrak{h}} that defines an almost complex structure on {\mathfrak{h}} . As a consequence, we obtain a classification of the 2-step nilpotent Lie algebras which carry coclosed {\mathrm{G}_{2}} -structures. We also prove that each one of these Lie algebras has a coclosed {\mathrm{G}_{2}} -structure inducing a nilsoliton metric, but this is not true for 3-step nilpotent Lie algebras with coclosed {\mathrm{G}_{2}} -structures. The existence of contact metric structures is also studied.


2009 ◽  
Vol 20 (11) ◽  
pp. 1347-1362 ◽  
Author(s):  
LEANDRO CAGLIERO ◽  
NADINA ROJAS

Given a Lie algebra 𝔤 over a field of characteristic zero k, let μ(𝔤) = min{dim π : π is a faithful representation of 𝔤}. Let 𝔥m be the Heisenberg Lie algebra of dimension 2m + 1 over k and let k [t] be the polynomial algebra in one variable. Given m ∈ ℕ and p ∈ k [t], let 𝔥m, p = 𝔥m ⊗ k [t]/(p) be the current Lie algebra associated to 𝔥m and k [t]/(p), where (p) is the principal ideal in k [t] generated by p. In this paper we prove that [Formula: see text]. We also prove a result that gives information about the structure of a commuting family of operators on a finite dimensional vector space. From it is derived the well-known theorem of Schur on maximal abelian subalgebras of 𝔤𝔩(n, k ).


Sign in / Sign up

Export Citation Format

Share Document