scholarly journals Radiation protection in the world and in former Yugoslavia and Serbia and Montenegro since discovering of the x-rays to nowadays

2006 ◽  
Vol 4 (1) ◽  
pp. 121-132
Author(s):  
M.M. Ninkovic

Harmful effects of radiation and call for protection against it were recognized practically immidiatly upon the discovery of X-rays and radioactivity. A chronological review of some key events in development of radiation protection is given in this paper. First, the main activities of the ICRP since its establishment to nowadays are presented. Afterwards, a general description of some, according to the author's opinion, important events in the field of radiation protection in the former Yugoslavia and Serbia and Montenegro are given as: Vinca accident; Organization of Radiation Protection Laboratory in Vinca Institute; International Vinca Dosimetry Experiment; First Symposium and organization of the Yugoslav Radiation Protection Association; the French - Yugoslav Colloquium on radiation protection; International intercomparison experiment on nuclear accident dosimetry, and the International Summer Schools and Symposium on Radiation Protection organized in Yugoslavia. Some comments on the Three Mile Island and Chernobyl accidents are given as well. Bioindicators of low dose and dose intensity exposure are cited as one of the main problems that have to be resolved in radiation protection in the near future. Finally, as one of the main problems that, according to the author's opinion, physicists have to resolve in this field in the near future would be development of the operational dosimeter for high energy neutrons.

2013 ◽  
Vol 14 (1) ◽  
pp. 143-148 ◽  
Author(s):  
BN Praveen ◽  
AR Shubhasini ◽  
R Bhanushree ◽  
PS Sumsum ◽  
CN Sushma

ABSTRACT Radiation is the transmission of energy through space and matter. There are several forms of radiation, including ionizing and nonionizing. X-rays are the ionizing radiation used extensively in medical and dental practice. Even though they provide useful information and aid in diagnosis, they also have the potential to cause harmful effects. In dentistry, it is mainly used for diagnostic purposes and in a dental set-up usually the practicing dentist exposes, processes and interprets the radiograph. Even though such exposure is less, it is critical to reduce the exposure to the dental personnel and patients in order to prevent the harmful effects of radiation. Several radiation protection measures have been advocated to ameliorate these effects. A survey conducted in the Bengaluru among practicing dentists revealed that radiation protection awareness was very low and the necessary measures taken to reduce the exposure were not adequate. The aim of the article is to review important parameters that must be taken into consideration in the clinical set-up to reduce radiation exposure to patients and dental personnel. How to cite this article Praveen BN, Shubhasini AR, Bhanushree R, Sumsum PS, Sushma CN. Radiation in Dental Practice: Awareness, Protection and Recommendations. J Contemp Dent Pract 2013;14(1):143-148.


2019 ◽  
Vol 5 (03) ◽  
pp. 200-205
Author(s):  
Ashish Chaturvedi ◽  
Vinod Jain

The effects of radiation was first recognized in the use of X-rays for medical diagnosis. The rush in exploiting the medical benefits led fairly to the recognition of the risks and induced harm associated with it. In the early days, the most obvious harm resulting from high doses of radiation, such as radiation burns were observed and protection efforts were focused on their prevention, mainly for practitioners rather than patients. Although the issue was narrow, this lead to the origin of radiation protection as a discipline. Subsequently, it was gradually recognized that there were other, less obvious, harmful radiation effects such as radiation-induced cancer, for which there is a certain risk even at low doses of radiation. This risk cannot be completely prevented but can only be minimized. Therefore, the balancing of benefits from nuclear and radiation practices against radiation risk and efforts to reduce the residual risk has become a major feature of radiation protection. In this paper, we shall be looking at the precautionary measures for protecting life, properties and environment against ionizing radiation.


Author(s):  
A.J. Tousimis

An integral and of prime importance of any microtopography and microanalysis instrument system is its electron, x-ray and ion detector(s). The resolution and sensitivity of the electron microscope (TEM, SEM, STEM) and microanalyzers (SIMS and electron probe x-ray microanalyzers) are closely related to those of the sensing and recording devices incorporated with them.Table I lists characteristic sensitivities, minimum surface area and depth analyzed by various methods. Smaller ion, electron and x-ray beam diameters than those listed, are possible with currently available electromagnetic or electrostatic columns. Therefore, improvements in sensitivity and spatial/depth resolution of microanalysis will follow that of the detectors. In most of these methods, the sample surface is subjected to a stationary, line or raster scanning photon, electron or ion beam. The resultant radiation: photons (low energy) or high energy (x-rays), electrons and ions are detected and analyzed.


2021 ◽  
Vol 193 (1) ◽  
pp. 43-54
Author(s):  
Yasuda Mitsuyoshi ◽  
Funada Tomoya ◽  
Sato Hisaya ◽  
Kato Kyoichi

Abstract As chest x rays involve risks of patients falling, radiologic technologists (technologists) commonly assist patients, and as the assistance takes place near the patients, the eye lenses of the technologists are exposed to radiation. The recommendations of the International Commission on Radiological Protection suggest that the risk of developing cataracts due to lens exposure is high, and this makes it necessary to reduce and minimize the exposure. The present study investigated the positions of technologists assisting patients that will minimize exposure of the eye lens to radiation. The results showed that it is possible to reduce the exposure by assisting from the following positions: 50% at the sides rather than diagonally behind, 10% at the right side of the patient rather than the left and 40% at 250 mm away from the patient. The maximum reduction with radiation protection glasses was 54% with 0.07 mmPb and 72% with 0.88 mmPb.


2020 ◽  
Vol 33 (6) ◽  
pp. 11-16
Author(s):  
K. E. Nygren, ◽  
D. C. Pagan, ◽  
J. P. C. Ruff ◽  
E. Arenholz ◽  
J. D. Brock

2021 ◽  
Vol 366 (6) ◽  
Author(s):  
Hidetoshi Sano ◽  
Yasuo Fukui

AbstractWe review recent progress in elucidating the relationship between high-energy radiation and the interstellar medium (ISM) in young supernova remnants (SNRs) with ages of ∼2000 yr, focusing in particular on RX J1713.7−3946 and RCW 86. Both SNRs emit strong nonthermal X-rays and TeV $\gamma $ γ -rays, and they contain clumpy distributions of interstellar gas that includes both atomic and molecular hydrogen. We find that shock–cloud interactions provide a viable explanation for the spatial correlation between the X-rays and ISM. In these interactions, the supernova shocks hit the typically pc-scale dense cores, generating a highly turbulent velocity field that amplifies the magnetic field up to 0.1–1 mG. This amplification leads to enhanced nonthermal synchrotron emission around the clumps, whereas the cosmic-ray electrons do not penetrate the clumps. Accordingly, the nonthermal X-rays exhibit a spatial distribution similar to that of the ISM on the pc scale, while they are anticorrelated at sub-pc scales. These results predict that hadronic $\gamma $ γ -rays can be emitted from the dense cores, resulting in a spatial correspondence between the $\gamma $ γ -rays and the ISM. The current pc-scale resolution of $\gamma $ γ -ray observations is too low to resolve this correspondence. Future $\gamma $ γ -ray observations with the Cherenkov Telescope Array will be able to resolve the sub-pc-scale $\gamma $ γ -ray distribution and provide clues to the origin of these cosmic $\gamma $ γ -rays.


2020 ◽  
Vol 494 (3) ◽  
pp. 4357-4370
Author(s):  
B Olmi ◽  
D F Torres

ABSTRACT Identification and characterization of a rapidly increasing number of pulsar wind nebulae is, and will continue to be, a challenge of high-energy gamma-ray astrophysics. Given that such systems constitute -by far- the most numerous expected population in the TeV regime, such characterization is important not only to learn about the sources per se from an individual and population perspective, but also to be able to connect them with observations at other frequencies, especially in radio and X-rays. Also, we need to remove the emission from nebulae in highly confused regions of the sky for revealing other underlying emitters. In this paper, we present a new approach for theoretical modelling of pulsar wind nebulae: a hybrid hydrodynamic-radiative model able to reproduce morphological features and spectra of the sources, with relatively limited numerical cost.


Sign in / Sign up

Export Citation Format

Share Document