scholarly journals Issr marker based population genetic study of mediterranean fruit fly Ceratitis capitata (Diptera: Tephritidae)

Genetika ◽  
2020 ◽  
Vol 52 (1) ◽  
pp. 311-322
Author(s):  
Özge Kurd ◽  
Ersin Doğaç ◽  
Vatan Taşkin ◽  
Belgin Göçmen-Taşkin

The Mediterranean fruit fly, Ceratitis capitata, is a serious pest of agricultural resources. Despite its economic importance, the population genetic structure of this species is still poorly investigated at micro-geographical level, especially from eastern Mediterranean basin. Knowledge about the genetic structure of C. capitata populations is a necessary requisite for understanding population history of the species and designing successful regional eradication programs. In the current study, the inter-simple sequences repeat (ISSR) markers were employed to assess the genetic diversity and population structure of seven natural populations of C. capitata that were collected from different regions of Turkey. Low to moderate levels of genetic diversity were observed. The estimated values for gene flow (Nm) and coefficient of genetic differentiation among populations (GST) were 3.07 and 0.14, respectively. The results of Principle Component Analysis (PCoA) and Unweighted Pair Group Arithmetic Mean Analysis (UPGMA) tend to be uniform in whole, the Antalya populations was clearly separated from the rest. Local environmental conditions, such as differences in pest control management strategies, agricultural practices, microclimates and human mediated transportations might be important factors in shaping the genetic structure of this species in Antalya. This paper provides useful data for understanding population genetic structure of C. capitata populations in eastern Mediterranean basin and development of effective regional pest management strategies.

Author(s):  
Assel Akhmetova ◽  
Jimena Guerrero ◽  
Paul McAdam ◽  
Liliana C.M. Salvador ◽  
Joseph Crispell ◽  
...  

AbstractBackgroundBovine tuberculosis (bTB) is a costly epidemiologically complex, multi-host, endemic disease. Lack of understanding of transmission dynamics may undermine eradication efforts. Pathogen whole genome sequencing improves epidemiological inferences, providing a means to determine the relative importance of inter- and intra- species host transmission for disease persistence. We sequenced an exceptional data set of 619Mycobacterium bovisisolates from badgers and cattle in a 100km2bTB ‘hotspot’ in Northern Ireland. Historical molecular subtyping data permitted the targeting of an endemic pathogen lineage, whose long-term persistence provided a unique opportunity to study disease transmission dynamics in unparalleled detail. Additionally, to assess whether badger population genetic structure was associated with the spatial distribution of pathogen genetic diversity, we microsatellite genotyped hair samples from 769 badgers trapped in this area.ResultsGraph transmission tree methods and structured coalescent analyses indicated the majority of bacterial diversity was found in the local cattle population. Results pointed to transmission from cattle to badger being more common than badger to cattle. Furthermore, the presence of significant badger population genetic structure in the landscape was not associated with the spatial distribution ofM. bovisgenetic diversity, suggesting that badger-to-badger transmission may not be a key determinant of disease persistence.SignificanceOur data were consistent with badgers playing a smaller role in the maintenance ofM. bovisinfection in this study site, compared to cattle. Comparison to other areas suggests thatM. bovistransmission dynamics are likely to be context dependent, and the role of wildlife difficult to generalise.


2020 ◽  
Vol 13 ◽  
pp. 194008292094917
Author(s):  
Misael D. Mancilla-Morales ◽  
Santiago Romero-Fernández ◽  
Araceli Contreras-Rodríguez ◽  
José J. Flores-Martínez ◽  
Víctor Sánchez-Cordero ◽  
...  

Estimations on the influence of evolutionary and ecological forces as drivers of population gene diversity and genetic structure have been performed on a growing number of colonial seabirds, but many remain poorly studied. In particular, the population genetic structure of storm-petrels (Hydrobatidae) has been evaluated in only a few of the 24 recognized species. We assessed the genetic diversity and population structure of the Black Storm-Petrel ( Hydrobates melania) and the Least Storm-Petrel ( Hydrobates microsoma) in the Gulf of California. The two species were selected because they are pelagic seabirds with comparable ecological traits and breeding grounds. Recent threats such as introduced species of predators and human disturbance have resulted in a decline of many insular vertebrate populations in this region and affected many different aspects of their life histories (ranging from reproductive success to mate selection), with a concomitant loss of genetic diversity. To elucidate to what extent the population genetic structure occurs in H. melania and H. microsoma, we used 719 base pairs from the mitochondrial cytochrome oxidase c subunit I gene. The evaluation of their molecular diversity, genetic structure, and gene flow were performed through diversity indices, analyses of molecular and spatial variance, and isolation by distance (IBD) across sampling sites, respectively. The population genetic structure (via AMOVA and SAMOVA) and isolation by distance (pairwise p-distances and FST/1– FST (using ΦST) were inferred for H. microsoma. However, for H. melania evidence was inconclusive. We discuss explanations leading to divergent population genetic structure signatures in these species, and the consequences for their conservation.


Heredity ◽  
2020 ◽  
Vol 126 (1) ◽  
pp. 63-76
Author(s):  
Sarah M. Griffiths ◽  
Mark J. Butler ◽  
Donald C. Behringer ◽  
Thierry Pérez ◽  
Richard F. Preziosi

AbstractUnderstanding population genetic structure can help us to infer dispersal patterns, predict population resilience and design effective management strategies. For sessile species with limited dispersal, this is especially pertinent because genetic diversity and connectivity are key aspects of their resilience to environmental stressors. Here, we describe the population structure of Ircinia campana, a common Caribbean sponge subject to mass mortalities and disease. Microsatellites were used to genotype 440 individuals from 19 sites throughout the Greater Caribbean. We found strong genetic structure across the region, and significant isolation by distance across the Lesser Antilles, highlighting the influence of limited larval dispersal. We also observed spatial genetic structure patterns congruent with oceanography. This includes evidence of connectivity between sponges in the Florida Keys and the southeast coast of the United States (>700 km away) where the oceanographic environment is dominated by the strong Florida Current. Conversely, the population in southern Belize was strongly differentiated from all other sites, consistent with the presence of dispersal-limiting oceanographic features, including the Gulf of Honduras gyre. At smaller spatial scales (<100 km), sites showed heterogeneous patterns of low-level but significant genetic differentiation (chaotic genetic patchiness), indicative of temporal variability in recruitment or local selective pressures. Genetic diversity was similar across sites, but there was evidence of a genetic bottleneck at one site in Florida where past mass mortalities have occurred. These findings underscore the relationship between regional oceanography and weak larval dispersal in explaining population genetic patterns, and could inform conservation management of the species.


2020 ◽  
Vol 187 ◽  
pp. 106106
Author(s):  
M. Martínez-Trancón ◽  
J.C. Parejo ◽  
A. Rabasco ◽  
P. Padilla ◽  
J.A. Padilla

2016 ◽  
Vol 47 (4) ◽  
pp. 463-470 ◽  
Author(s):  
S. M. F. Vahidi ◽  
M. O. Faruque ◽  
M. Falahati Anbaran ◽  
F. Afraz ◽  
S. M. Mousavi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document