scholarly journals The current distribution in an electrochemical cell. Part IV. The relation to the haring-blum method

1999 ◽  
Vol 64 (5-6) ◽  
pp. 341-347
Author(s):  
Konstantin Popov ◽  
Slavisa Pesic ◽  
Tanja Kostic

It was shown that the current density-cell voltage curves recorded in a cell with parallel plate electrodes for different distances between the edges of the electrodes and side walls of the cell can be used to determine the current distribution in cells of the Haring-Blum type.

2002 ◽  
Vol 67 (4) ◽  
pp. 273-278 ◽  
Author(s):  
Konstantin Popov ◽  
S.M. Pesic ◽  
Predrag Zivkovic

Anew method for the determination of the ability of an electrolyte to distribute uniformly current density in an electrochemical cell is proposed. It is based on the comparison of the current in cells in which the electrode edges touch the cell side walls with the current in cells with different electrode edge ? cell side wall distances. The effects of cell geometry process parameters and current density are discussed and illustrated using the results presented in the previous papers from this series.


1999 ◽  
Vol 64 (12) ◽  
pp. 795-800 ◽  
Author(s):  
Konstantin Popov ◽  
Slavisa Pesic ◽  
Tanja Kostic

A method for the calculation of the depth of the current line penetration between the edges of the electrodes and the side walls of the cell in a cell with plane parallel electrode arrangement is proposed. The method is verified by the calculation of the polarization curves for the cells in which the electrode edges do not touch the side walls of the cell. The agreement between the calculated and the measured values was fair.


2001 ◽  
Vol 66 (2) ◽  
pp. 131-137
Author(s):  
K.I. Popov ◽  
R.M. Stevanovic ◽  
P.M. Zivkovic

Cell voltage - current density dependences for a model electrochemical cell of fixed geometry were calculated for different electrolyte conductivities, Tafel slopes and cathodic exchange current densities. The ratio between the current density at the part of the cathode nearest to the anode and the one furthest away were taken as a measure for the estimation of the current density distribution. The calculations reveal that increasing the conductivity of the electrolyte, as well as increasing the cathodic Tafel slope should both improve the current density distribution. Also, the distribution should be better under total activation control or total diffusion control rather than at mixed activation- diffusion-Ohmic control of the deposition process. On the contrary, changes in the exchange current density should not affect it. These results, being in agreement with common knowledge about the influence of different parameters on the current distribution in an electrochemical cell, demonstrate that a quick estimation of the current distribution can be performed by a simple comparison of the current density at the point of the cathode closest to anode with that at furthest point.


2020 ◽  
Vol 4 (1) ◽  
pp. 312-323 ◽  
Author(s):  
Harsharaj S. Jadhav ◽  
Animesh Roy ◽  
Bezawit Z. Desalegan ◽  
Jeong Gil Seo

A room-temperature synthesized NiFeCe2 electrocatalyst delivered a current density of 10 mA cm−2 at a cell voltage of 1.59 V when used as the electrolyzer.


2021 ◽  
Author(s):  
Nannan Chen ◽  
Yanhong Wang ◽  
Xiaoqiang Du ◽  
Xiaoshuang Zhang

The results demonstrate that Cu–Ni–S/NF//Cu–Ni–P/NF pairs show superior water splitting performance with only requiring a cell voltage of 1.50 V to achieve a current density of 20 mA cm−2.


2017 ◽  
Vol 5 (19) ◽  
pp. 9377-9390 ◽  
Author(s):  
Tingting Liu ◽  
Mian Li ◽  
Chuanlai Jiao ◽  
Mehboob Hassan ◽  
Xiangjie Bo ◽  
...  

A (−) Ni3N/CMFs/Ni3N‖Ni3N/CMFs/Ni3N (+) electrolysis cell requires a cell voltage of only 1.65 V to achieve a current density of 20 mA cm−2.


2005 ◽  
Vol 70 (2) ◽  
pp. 251-253 ◽  
Author(s):  
Konstantin Popov ◽  
S.M. Pesic ◽  
Predrag Zivkovic

Anew dimensionless group for the estimation of the current density distribution in an electrochemical cell is defined as the ratio of the sum of the absolute values of the anodic and cathodic over potentials to the overall cell voltage.


2018 ◽  
Vol 42 (22) ◽  
pp. 18201-18207 ◽  
Author(s):  
Xiaoqiang Du ◽  
Qibin Wang ◽  
Xiaoshuang Zhang

NiO/Ni3S2 affords a current density of 10 mA cm−2 in 1.0 M KOH at a cell voltage of 1.59 V, i.e., comparable to the commercial 20 wt% IrO2/C–40 wt% Pt/C couple (1.55 V at 10 mA cm−2).


2001 ◽  
Vol 66 (7) ◽  
pp. 491-498 ◽  
Author(s):  
K.I. Popov ◽  
S.M. Pesic ◽  
P.M. Zivkovic

Amethod for the quantitative determination of the current density distribuion in cells with a three plane parallel electrode arrangement is proposed. It is shown that the current density distribution can be determined using the data obtained by simple polarization measurements. The relation to the Haring-Blum cell with P = 2 is discussed.


Sign in / Sign up

Export Citation Format

Share Document