scholarly journals Occurrence and molecular characterization of wheat streak mosaic virus in wheat in Serbia

2020 ◽  
Vol 35 (2) ◽  
pp. 117-131
Author(s):  
Ana Vucurovic ◽  
Ivana Stankovic ◽  
Katarina Zecevic ◽  
Branka Petrovic ◽  
Goran Delibasic ◽  
...  

The wheat streak mosaic virus (WSMV), vectored by the wheat curl mite, is globally distributed and threatens wheat production worldwide. Since its first occurrence in Serbia in the 1960s, WSMV presence has not been monitored. In 2019, a total of 62 samples of fi ve wheat cultivars from eight locations in Serbia were collected and tested for the presence of nine common wheat viruses: WSMV, barley yellow dwarf virus-PAV, -MAV, -SGV, and -RMV, cereal yellow dwarf virus-RPV, wheat spindle streak virus, brome mosaic virus, and soil-borne wheat mosaic virus, using individual or multiplex RT-PCR. WSMV was detected in 58.1% of the tested samples in seven wheat crops at five different locations. Species-specific primers failed to detect the presence of the other eight tested viruses. For further confirmation of WSMV, RT-PCR with the WS8166F/WS8909R primers covering the coat protein (CP) gene was carried out for both amplification and sequencing. The amplified product of the correct predicted size (750 bp) derived from four selected isolates, 98-19, 99-19, 102-19 and 120-19, was sequenced and deposited in GenBank (MT461299, MT461300, MT461301 and MT461302, respectively). Serbian WSMV isolates showed very high nucleotide identity (98.16-99.02%) and shared a deletion of triplet codon GCA at nucleotide position 8412- 8414 resulting in deletion of glycine amino acid (Gly2761). Phylogenetic analysis conducted on CP gene sequences revealed the existence of four clades, named A, B, C and D, and one recently introduced clade B1. All Serbian wheat WSMV isolates grouped into clade B together with other European isolates and one isolate from Iran. The results of this study provide the first insight into molecular characterisation of Serbian WSMV isolates, indicating their close relationship with other European isolates and existence of a single genotype in the country. Phylogenetic analysis also confirms the dispersal of WSMV isolates throughout Europe from a single locus.

Pathogens ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 4 ◽  
Author(s):  
Fatma Hussein Kiruwa ◽  
Samuel Mutiga ◽  
Joyce Njuguna ◽  
Eunice Machuka ◽  
Senait Senay ◽  
...  

Sustainable control of plant diseases requires a good understanding of the epidemiological aspects such as the biology of the causal pathogens. In the current study, we used RT-PCR and Next Generation Sequencing (NGS) to contribute to the characterization of maize lethal necrotic (MLN) viruses and to identify other possible viruses that could represent a future threat in maize production in Tanzania. RT-PCR screening for Maize Chlorotic Mottle Virus (MCMV) detected the virus in the majority (97%) of the samples (n = 223). Analysis of a subset (n = 48) of the samples using NGS-Illumina Miseq detected MCMV and Sugarcane Mosaic Virus (SCMV) at a co-infection of 62%. The analysis further detected Maize streak virus with an 8% incidence in samples where MCMV and SCMV were also detected. In addition, signatures of Maize dwarf mosaic virus, Sorghum mosaic virus, Maize yellow dwarf virus-RMV and Barley yellow dwarf virus were detected with low coverage. Phylogenetic analysis of the viral coat protein showed that isolates of MCMV and SCMV were similar to those previously reported in East Africa and Hebei, China. Besides characterization, we used farmers’ interviews and direct field observations to give insights into MLN status in different agro-ecological zones (AEZs) in Kilimanjaro, Mayara, and Arusha. Through the survey, we showed that the prevalence of MLN differed across regions (P = 0.0012) and villages (P < 0.0001) but not across AEZs (P > 0.05). The study shows changing MLN dynamics in Tanzania and emphasizes the need for regional scientists to utilize farmers’ awareness in managing the disease.


2021 ◽  
Vol 61 (3) ◽  
pp. 214-220

Onion yellow dwarf virus is distributed worldwide significantly reducing yield of crops from the Allium genus. The aim of the study was the detection and molecular characterization of newly identified OYDV isolates infecting onions in Poland. The virus was detected by transmission electron microscopy and RT-PCR techniques using two pairs of diagnostic primers: OYDV-NibCPF1/R1 and OYDV-CPF2/R2. The specificity of obtained RT-PCR products was confirmed by Sanger sequencing and received viral coat protein sequence was used for phylogenetic analysis. The phylogenetic analysis was carried out using CP sequences of the new Polish onion isolate obtained in this study and 37 other sequences of OYDV retrieved from GenBank. The analysis revealed that the Polish OYDV isolate is the most similar to the OYDV isolates derived from onions from Argentina and Germany, which may indicate their common origin. Moreover, it was observed that the Polish onion and garlic isolates are very diverse and belong to different phylogroups.


Plant Disease ◽  
2006 ◽  
Vol 90 (7) ◽  
pp. 970-970 ◽  
Author(s):  
M. A. Achon ◽  
L. Serrano ◽  
C. Ratti ◽  
C. Rubies-Autonell

Severe dwarfing, yellowing, and crop failure were observed on barley in northeastern Spain during March and April of 2003. Leaves from 106 plants collected from 15 barley fields were analyzed using enzyme-linked immunosorbent assay (ELISA) with commercial antisera (Loewe Biochemica, Munich) specific for Barley mild mosaic virus (BaMMV), Barley yellow mosaic virus (BaYMV), the PAV and MAV serotypes of Barley yellow dwarf virus (BYDV), Barley yellow striate mosaic virus (BYSMV), Barley stripe mosaic virus (BSMV), Brome mosaic virus (BMV), Brome streak mosaic virus, (BStMV), Cereal yellow dwarf virus (CYDV), Wheat streak mosaic virus (WSMV), Wheat spindle streak mosaic virus (WSSMV), Soilborne cereal mosaic virus (SBCMV), and Wheat dwarf virus (WDV). In 70 samples, BYDV-PAV was the sole virus detected; in 20 other samples, this virus was detected in association with WDV, WSMV, BaMMV, and/or BaYMV. Mixed infections were further analyzed using reverse transcriptase-polymerase chain reaction (RT-PCR) or PCR with specific primers that amplify 445 bp of BaMMV (3), 433 bp of BaYMV (1), 600 bp of WSMV (primer 1: 5′CGAAACGCAGCG TTATTTC3′, primer 2: 5′CATCTGAAG GGCTTGACG3′), and 1,200 bp of WDV (4). Eight samples gave the expected amplicons for WDV, two samples gave the expected amplicon for BaMMV, and one sample gave the BaMMV and BaYMV amplicons. No samples gave the amplicon for WSMV. In addition, 10 samples that were positive with ELISA for BYDV, either as a single or as multiple infections with other viruses, were analyzed with specific primers that amplify 600 bp of the BYDV genome (2) and all gave the expected RT-PCR product. ELISA and RT-PCR results agreed completely for WDV and BYDV samples, but agreed poorly for BaMMV and BaYMV (three of seven ELISA-positive samples). PCR products of WDV were subsequently cloned and sequenced. Sequence analysis confirmed the presence of WDV in these barley samples. This report shows the high occurrence of BYDV in barley fields and its association with BaMMV, BaYMV, and WDV infections that induces barley crop failure. To our knowledge, this is the first detection of WDV in Spain. References: (1) M. A. Achon et al. Plant Dis.87:1004, 2003. (2). E. S. G. Canning et al. J. Virol. Methods 56:191, 1996. (3) D. Hariri et al. Eur. J. Plant Pathol. 106:365, 2000. (4) A. Kvarnheden et al. Arch Virol. 147:206, 2002.


Plant Disease ◽  
2020 ◽  
Vol 104 (6) ◽  
pp. 1789-1800 ◽  
Author(s):  
B. A. Hodge ◽  
P. A. Paul ◽  
L. R. Stewart

Ohio is a leading producer of soft red winter wheat in the United States. Many viruses impact wheat production, but there is a lack of contemporary information on the distribution and potential impact of wheat viruses in Ohio. To address this knowledge gap, we created a comprehensive dataset of viruses identified by high-throughput sequencing (HTS) and their incidence in field sites sampled across the state. Samples were collected from 103 field sites in surveys conducted in 2012, 2016, and 2017 and subjected to RNA HTS, reverse transcription (RT) PCR, or enzyme-linked immunosorbent assay to assess virus sequence diversity, prevalence, and incidence within fields. Partial and complete virus sequences were assembled and detection validated by RT-PCR. Assembled sequences were compared with previously known virus sequences, and novel sequences were validated by Sanger sequencing. The viruses detected most often included barley yellow dwarf virus (BYDV), cereal yellow dwarf virus (CYDV), wheat streak mosaic virus (WSMV), and wheat spindle streak mosaic virus (WSSMV). These viruses were detected at 67, 69, 55, and 28% of the field sites sampled, with mean incidences of 18, 19, 20, and 49%, respectively, within fields where they were detected. Brome mosaic virus (BMV) and cocksfoot mottle virus (CfMV) were also viruses of potential importance detected in Ohio, found in 26 and 17% of the field sites sampled, respectively. Based on results from logistic regression analyses, the presence of BYDV, CYDV, WSMV, and WSSMV was associated with the presence of volunteer wheat, BYDV and CfMV with monocots as the previous crop, and BMV with the presence of nearby corn fields (P < 0.10). For six viruses, there was evidence of spatial clustering in at least one field site and the variance of mean incidence was higher at the county level than at the regional spatial level. This finding suggests that county- and site-specific factors influenced the incidence and spatial pattern of some viruses. The results of this study provide a snapshot of viruses present in Ohio wheat and insights into their biology, potential risks to wheat production, and possible management strategies.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2051
Author(s):  
Roger A. C. Jones ◽  
Murray Sharman ◽  
Piotr Trębicki ◽  
Solomon Maina ◽  
Benjamin S. Congdon

This review summarizes research on virus diseases of cereals and oilseeds in Australia since the 1950s. All viruses known to infect the diverse range of cereal and oilseed crops grown in the continent’s temperate, Mediterranean, subtropical and tropical cropping regions are included. Viruses that occur commonly and have potential to cause the greatest seed yield and quality losses are described in detail, focusing on their biology, epidemiology and management. These are: barley yellow dwarf virus, cereal yellow dwarf virus and wheat streak mosaic virus in wheat, barley, oats, triticale and rye; Johnsongrass mosaic virus in sorghum, maize, sweet corn and pearl millet; turnip yellows virus and turnip mosaic virus in canola and Indian mustard; tobacco streak virus in sunflower; and cotton bunchy top virus in cotton. The currently less important viruses covered number nine infecting nine cereal crops and 14 infecting eight oilseed crops (none recorded for rice or linseed). Brief background information on the scope of the Australian cereal and oilseed industries, virus epidemiology and management and yield loss quantification is provided. Major future threats to managing virus diseases effectively include damaging viruses and virus vector species spreading from elsewhere, the increasing spectrum of insecticide resistance in insect and mite vectors, resistance-breaking virus strains, changes in epidemiology, virus and vectors impacts arising from climate instability and extreme weather events, and insufficient industry awareness of virus diseases. The pressing need for more resources to focus on addressing these threats is emphasized and recommendations over future research priorities provided.


2021 ◽  
Vol 25 (1) ◽  
pp. 40
Author(s):  
Nurenik Nurenik ◽  
Sedyo Hartono ◽  
Sri Sulandari ◽  
Susamto Somowiyarjo ◽  
Argawi Kandito

Viruses have been a problem on garlic cultivations in various countries. There are several viruses reported infecting garlic. Genera Potyvirus and Carlavirus are the most common viruses found infecting garlic. Mixed infection on garlic is often designated as a “garlic viral complex”. These viruses can be transmitted through imported garlic seeds. Therefore, it is necessary to conduct early detection of garlic seeds to prevent the epidemic of these viruses. This study aimed to detect Onion yellow dwarf virus (OYDV) and Shallot latent virus (SLV) on garlic. Garlic samples were obtained from Enrekang, Magelang, Temanggung, Tawangmangu, and Yogyakarta. Total RNA was extracted from the samples and subsequently used for RT-PCR using two pairs of specific primers SLV-F/SLV-R and OYDV-F/OYDV-R. Primary pair SLV-F/SLV-R in amplicons sized 276 bp, while OYDV-F/OYDV-R in amplicons sized 112 bp. RT-PCR results showed that OYDV was found in all samples tested in this study. Meanwhile, double infections (OYDV and SLV) were found in eight out of ten samples tested. These results indicated that double infections on garlic were common in Indonesia.


2009 ◽  
Vol 10 (1) ◽  
pp. 14 ◽  
Author(s):  
Mary Burrows ◽  
Gary Franc ◽  
Charlie Rush ◽  
Tamla Blunt ◽  
Dai Ito ◽  
...  

Field surveys in 2008 determined the prevalence and diversity of viruses present in the Great Plains wheat crops. Symptomatic plants (n = 754) in nine states were tested for Wheat streak mosaic virus (WSMV), Wheat mosaic virus (WMoV, formerly known as High Plains virus), Triticum mosaic virus (TriMV), Barley yellow dwarf virus-PAV (BYDV-PAV), and Cereal yellow dwarf virus-RPV (CYDV-RPV), using indirect ELISA. Virus prevalence varied greatly, with average frequency of detection highest for WSMV (47%), followed by WMoV (19%), TriMV (17%), BYDV-PAV (7%), and lowest for CYDV-RPV (2%). Most positive plant samples (37%) had one virus present, with decreasing frequencies for co-infection by two (19%), three (5%), or four viruses (1%). TriMV was detected for the first time in Colorado, Nebraska, Oklahoma, South Dakota, Texas, and Wyoming. WMoV was identified for the first time in Montana and Wyoming. Chlorotic streaks were more frequently associated with WSMV, WMoV, and TriMV (R = 0.166 to 0.342; P < 0.05), and stunting was more frequently associated with WMoV (R = 0.142; P = 0.004) or TriMV (R = 0.107; P = 0.033) than WSMV. Symptom severity did not increase with co-infection as compared to single virus infections, with the exception of plants co-infected with mite transmitted viruses in Texas. Accepted for publication 1 May 2009. Published 6 July 2009.


2003 ◽  
Vol 93 (11) ◽  
pp. 1386-1392 ◽  
Author(s):  
Boovaraghan Balaji ◽  
Dennis B. Bucholtz ◽  
Joseph M. Anderson

Reliable detection and quantification of barley and cereal yellow dwarf viruses (YDVs) is a critical component in managing yellow dwarf diseases in small grain cereal crops. The method currently used is enzyme-linked immunosorbent assay (ELISA), using antisera against the coat proteins that are specific for each of the various YDVs. Recently, quantitative real-time reverse-transcription polymerase chain reaction (Q-RT-PCR) has been used to detect bacterial and viral pathogens and to study gene expression. We applied this technique to detect and quantify YDVs using primers specific for Barley yellow dwarf virus-PAV (BYDV-PAV) and Cereal yellow dwarf virus-RPV (CYDV-RPV) coat protein genes because of the higher sensitivity of RT-PCR and the advantage of using a real-time PCR instrument. This Q-RT-PCR was used to detect BYDV and CYDV, and to examine disease development in a resistant wheatgrass, a resistant wheat line, a susceptible wheat line, and a susceptible oat line. BYDV-PAV and CYDV-RPV were detected as early as 2 and 6 h, respectively, in susceptible oat compared with detection by ELISA at 4 and 10 days postinoculation. BYDV-PAV RNA accumulated more rapidly and to a higher level than CYDV-RPV RNA in both oat and wheat, which may account for PAV being more prevalent and causing more severe viral disease than CYDV. Q-RT-PCR is reproducible, sensitive, and has the potential to be used for examining yellow dwarf disease and as a rapid diagnostic tool for YDVs.


Sign in / Sign up

Export Citation Format

Share Document