scholarly journals The dual-slope conversion improvement

2014 ◽  
Vol 11 (3) ◽  
pp. 351-363
Author(s):  
Radojle Radetic ◽  
Marijana Pavlov-Kagadejev ◽  
Nikola Milivojevic

The dual-slope ADC (DSADC) is a type of analog-to-digital conversion with low input bandwidths. It is pretty slow, but its ability to reject high-frequency noise and fixed low frequencies such as 50 Hz or 60 Hz makes it useful in noisy industrial environments and applications. It provides very good resolution. For the practical measurements in the Institutes laboratory an instrument is designed and realized. The base DSADC method is used, but improved by multiple conversions to make the measuring more precise and the time shorter. The special attention is paid to the problems occurred in practical realization and the way to overcome them. The paper describes the proposed and applied solutions, functional principles and achieved performances of the realized instrument.

Author(s):  
Neha Jain ◽  
Nir Shlezinger ◽  
Yonina C. Eldar ◽  
Anubha Gupta ◽  
Vivek Ashok Bohara

2019 ◽  
Vol 67 (4) ◽  
pp. 315-329
Author(s):  
Rongjiang Tang ◽  
Zhe Tong ◽  
Weiguang Zheng ◽  
Shenfang Li ◽  
Li Huang

2020 ◽  
pp. 1475472X2097838
Author(s):  
CK Sumesh ◽  
TJS Jothi

This paper investigates the noise emissions from NACA 6412 asymmetric airfoil with different perforated extension plates at the trailing edge. The length of the extension plate is 10 mm, and the pore diameters ( D) considered for the study are in the range of 0.689 to 1.665 mm. The experiments are carried out in the flow velocity ( U∞) range of 20 to 45 m/s, and geometric angles of attack ( αg) values of −10° to +10°. Perforated extensions have an overwhelming response in reducing the low frequency noise (<1.5 kHz), and a reduction of up to 6 dB is observed with an increase in the pore diameter. Contrastingly, the higher frequency noise (>4 kHz) is observed to increase with an increase in the pore diameter. The dominant reduction in the low frequency noise for perforated model airfoils is within the Strouhal number (based on the displacement thickness) of 0.11. The overall sound pressure levels of perforated model airfoils are observed to reduce by a maximum of 2 dB compared to the base airfoil. Finally, by varying the geometric angle of attack from −10° to +10°, the lower frequency noise is seen to increase, while the high frequency noise is observed to decrease.


2021 ◽  
Vol 32 (3) ◽  
Author(s):  
Ruo-Shi Dong ◽  
Lei Zhao ◽  
Jia-Jun Qin ◽  
Wen-Tao Zhong ◽  
Yi-Chun Fan ◽  
...  

1993 ◽  
Vol 7 (4) ◽  
pp. 408 ◽  
Author(s):  
James R. Matey ◽  
M.J. Lauterbach

Sign in / Sign up

Export Citation Format

Share Document