scholarly journals The impact of quality of service parameters to the subjective and objective video quality assessment

2018 ◽  
Vol 15 (1) ◽  
pp. 97-114 ◽  
Author(s):  
Danilo Stanojevic ◽  
Boban Bondzulic ◽  
Boban Pavlovic ◽  
Vladimir Petrovic

This paper deals with the delay, delay variation - jitter, packet loss rate and bandwidth as quality of service parameters, in the form of four types of video quality degradations. The impact of defined levels of degradation on subjective impressions (given as mean opinion scores) is analyzed. ReTRiEVED video dataset with publicly available subjective scores is used in the analysis. Three full-reference measures are used for objective assessment of video quality. The degree of consistency of subjective and objective quality scores is shown through scatter plots and quantitative measures (linear correlation coefficient and correlation of the ranks). Based on the interpolation functions, quality of service parameters are mapped to subjective experience. We show that jitter is a much more destructive effect than other degradation types.

2020 ◽  
Vol 2020 (9) ◽  
pp. 167-1-167-6
Author(s):  
Helard Becerra Martinez ◽  
Mylène C.Q. Farias ◽  
Andrew Hines

The development of audio-visual quality models faces a number of challenges, including the integration of audio and video sensory channels and the modeling of their interaction characteristics. Commonly, objective quality metrics estimate the quality of a single component (audio or video) of the content. Machine learning techniques, such as autoencoders, offer as a very promising alternative to develop objective assessment models. This paper studies the performance of a group of autoencoder-based objective quality metrics on a diverse set of audio-visual content. To perform this test, we use a large dataset of audio-visual content (The UnB-AV database), which contains degradations in both audio and video components. The database has accompanying subjective scores collected on three separate subjective experiments. We compare our autoencoder-based methods, which take into account both audio and video components (multi-modal), against several objective (single-modal) audio and video quality metrics. The main goal of this work is to verify the gain or loss in performance of these single-modal metrics, when tested on audio-visual sequences.


Author(s):  
Miloš Ljubojević ◽  
Vojkan Vasković ◽  
Zdenka Babić ◽  
Dušan Starčević

Abstract: An increasing number of services and facilities that are of interest to users is based on video streaming. Technical characteristics of video have a strong impact on the quality of a video streaming service and its perception by users. The most important measure of quality, which focuses on the user, is the Quality of Experience (QoE). Given that video advertising is a typical video streaming application, it is necessary to analyze the effect of the change of video characteristics on the QoE. This paper examines the impact of resolution and frame rate change on the QoE level by using objective and subjective QoE metrics. It also looks at the possibility of mapping the objective QoE metrics into subjective ones, if the QoE in Internet video advertising is analyzed. It was demonstrated that the values obtained by the objective assessment of quality can be mapped to the results obtained by subjective assessment of quality when the quality of experience of linear in- stream video ads is analyzed. The results indicate that temporal aspects of video quality assessment, e.g. influence of resolution and frame rate change to the level of the QoE, can be achieved by implementation of objective methods. Therefore, quality of experience can be improved by the proper selection of video characteristics values.


2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
Ismail A. Ali ◽  
Martin Fleury ◽  
Mohammed Ghanbari

This paper presents a prioritization scheme based on an analysis of the impact on objective video quality when dropping individual slices from coded video streams. It is shown that giving higher-priority classified packets preference in accessing the wireless media results in considerable quality gain (up to 3 dB in tests) over the case when no prioritization is applied. The proposed scheme is demonstrated for an IEEE 802.11e quality-of-service- (QoS-) enabled wireless LAN. Though more complex prioritization systems are possible, the proposed scheme is crafted for mobile interactive or user-to-user video services and is simply implemented within the Main or the Baseline profiles of an H.264 codec.


2015 ◽  
Vol 14 (6) ◽  
pp. 5809-5813
Author(s):  
Abhishek Prabhakar ◽  
Amod Tiwari ◽  
Vinay Kumar Pathak

Wireless security is the prevention of unauthorized access to computers using wireless networks .The trends in wireless networks over the last few years is same as growth of internet. Wireless networks have reduced the human intervention for accessing data at various sites .It is achieved by replacing wired infrastructure with wireless infrastructure. Some of the key challenges in wireless networks are Signal weakening, movement, increase data rate, minimizing size and cost, security of user and QoS (Quality of service) parameters... The goal of this paper is to minimize challenges that are in way of our understanding of wireless network and wireless network performance.


Author(s):  
Simar Preet Singh ◽  
Rajesh Kumar ◽  
Anju Sharma ◽  
S. Raji Reddy ◽  
Priyanka Vashisht

Background: Fog computing paradigm has recently emerged and gained higher attention in present era of Internet of Things. The growth of large number of devices all around, leads to the situation of flow of packets everywhere on the Internet. To overcome this situation and to provide computations at network edge, fog computing is the need of present time that enhances traffic management and avoids critical situations of jam, congestion etc. Methods: For research purposes, there are many methods to implement the scenarios of fog computing i.e. real-time implementation, implementation using emulators, implementation using simulators etc. The present study aims to describe the various simulation and emulation tools for implementing fog computing scenarios. Results: Review shows that iFogSim is the simulator that most of the researchers use in their research work. Among emulators, EmuFog is being used at higher pace than other available emulators. This might be due to ease of implementation and user-friendly nature of these tools and language these tools are based upon. The use of such tools enhance better research experience and leads to improved quality of service parameters (like bandwidth, network, security etc.). Conclusion: There are many fog computing simulators/emulators based on many different platforms that uses different programming languages. The paper concludes that the two main simulation and emulation tools in the area of fog computing are iFogSim and EmuFog. Accessibility of these simulation/emulation tools enhance better research experience and leads to improved quality of service parameters along with the ease of their usage.


Sign in / Sign up

Export Citation Format

Share Document