scholarly journals Influence of mechanical activation of AL2O3 on synthesis of magnesium aluminate spinel

2004 ◽  
Vol 36 (2) ◽  
pp. 73-79 ◽  
Author(s):  
Zhang Zhihui ◽  
LI. Nan

Magnesium aluminate (MA) spinel is synthesized by reaction sintering from alumina and magnesia. The effects of mechanical activation of Al2O3 on reaction sintering were investigated. Non-milled a - Al2O3 and a - Al2O3 high-energy ball milled for 12h, 24h and 36h were mixed with a MgO analytical reagent according to the stoichiometric MA ratio, respectively and pressed into billets with diameters of 20mm and height of 15mm. The green-body billets were then sintered at high temperature in an air atmosphere. The results show that bulk density, relative content of MA and grain size of MA increase with increasing high-energy ball milling time of Al2O3. However prolonged milling time over 24h has a small beneficial effect on the densification of MA. Bulk density and grain size of a sample of a- Al2O3 milled for 24h are 3.30g/cm3 and 4-5 mm, respectively.

2013 ◽  
Vol 441 ◽  
pp. 3-6
Author(s):  
Hong Tao Wang ◽  
Ruo Yu Wang ◽  
Xiao Chen ◽  
Xiao Bo Bai ◽  
Zeng Xiang Dong ◽  
...  

In the present study, Fe-50at%Al/WC intermetallic matrix composite powder was produced through mechanical alloying (MA) followed by annealing treatment. The phase transformations, grain size, microstructure and thermal stability of the composite powder during milling and annealing treatment were studied. The results showed that a bcc Fe(Al) solid solution reinforced with nanoscale WC particles was formed through high-energy ball milling The grain size of Fe(Al) decreased and the lattice strain of Fe(Al) increased with increasing milling time. The as-milled Fe(Al)/WC composite powder had lamellar structure. The oxygen content of Fe(Al)/WC composite powder increased with increasing milling time. The phase transformation from Fe(Al) to Fe-Al intermetallic phases was related to the milling time of composite powder and could occure at temperature of 400°C.


2018 ◽  
Vol 941 ◽  
pp. 1990-1995
Author(s):  
Naidu V. Seetala ◽  
Cyerra L. Prevo ◽  
Lawrence E. Matson ◽  
Thomas S. Key ◽  
Ilseok I. Park

ZrB2 and HfB2 with incorporation of SiC are being considered as structural materials for elevated temperature applications. We used high energy ball milling of micron-size powders to increase lattice distortion enhanced inter-diffusion to get uniform distribution of SiC and reduce grain growth during Spark Plasma Sintering (SPS). High-energy planetary ball milling was performed on ZrB2 or HfB2 with 20vol% SiC powders for 24 and 48 hrs. The particle size distribution and crystal micro-strain were examined using Dynamic Light Scattering Technique and x-ray diffraction (XRD), respectively. XRD spectra were analyzed using Williamson-Hall plots to estimate the crystal micro-strain. The particle size decreased, and the crystal micro-strain increased with the increasing ball milling time. The SPS consolidation was performed at 32 MPa and 2,000°C. The SEM observation showed a tremendous decrease in SiC segregation and a reduction in grain size due to high energy ball milling of the precursor powders. Flexural strength of the SPS consolidated composites were studied using Four-Point Bend Beam test, and the micro-hardness was measured using Vickers micro-indenter with 1,000 gf load. Good correlation is observed in SPS consolidated ZrB2+SiC with increased micro-strain as the ball milling time increased: grain size decreased (from 9.7 to 3.2 μm), flexural strength (from 54 to 426 MPa) and micro-hardness (from 1528 to 1952 VHN) increased. The correlation is less evident in HfB2+SiC composites, especially in micro-hardness which showed a decrease with increasing ball milling time.


2007 ◽  
Vol 119 ◽  
pp. 1-4 ◽  
Author(s):  
Young Soon Kwon ◽  
Ji Soon Kim ◽  
Cheol Eeh Kim

Phase transformation induced by ball-milling was studied in this work. It was found that amorphous Fe90Zr10 ribbons undergo crystallization into BCC α-Fe(Zr) under milling in an AGO-2 mill. The decomposition degree of the amorphous phase increased with increasing milling time and intensity. Analyses of samples milled at different speeds suggested that the observed crystallization is a deformation-induced process rather than a thermally induced one. In addition, the decomposition behavior of a FeSn intermetallic under ball-milling was carefully studied. Upon milling a large amount of the FeSn intermetallic decomposed into Fe5Sn3 and FeSn2, where the average grain size of the product phases stayed nearly constant with milling-time. It is suggested that the mechanically driven decomposition of FeSn results from local melting of powder particles due to high temperature pulses during ball collisions.


2003 ◽  
Vol 788 ◽  
Author(s):  
Shashishekar Basavaraju ◽  
Ian Baker

ABSTRACTNanocrystalline stoichiometric FeCo powders were prepared by mechanically alloying elemental Fe and Co powders using a high-energy ball mill. The microstructural evolution was studied as a function of milling time and subsequent annealing using X-ray diffractometry and differential scanning calorimetry. The magnetic behavior of the specimens was characterized using a vibrating sample magnetometer and a magnetic force microscope. A reduction in grain size coupled with an increase in coercivity was observed as function of milling time. The smallest grain size of 4 nm, which exhibited a coercivity of 122 Oe and magnetization of 2 T at room temperature, was obtained after 240 h of milling. The reduction in grain size during milling was not accompanied by enhanced soft magnetic properties.


2011 ◽  
Vol 682 ◽  
pp. 25-32
Author(s):  
Cai Ju Li ◽  
Xin Kun Zhu ◽  
Jing Mei Tao ◽  
H.L. Tang ◽  
T.L. Chen

The preparation, mechanical properties, grain size and thermal property of bulk nanocrystalline Cu (BNC-Cu) were investigated in this paper. BNC-Cu can be produced by in situ consolidation of pure Cu powder with high-energy ball milling at room temperature; the average grain sizes of Cu samples decreased with the increasing of ball milling time before 9 h because the grain refining velocity was bigger than the grain growing velocity in this stage. When the ball milling time was beyond 9 h, the average grain size reached a steady minimum value about 27.5 nm. The microhardness of BNC-Cu samples increased with the extending of ball milling time in the first 9 h because the dominating factor was the hardening effect caused by grain refinement and work hardening rather than softening in this stage. BNC-Cu gained its highest microhardness about 1.59GPa when the ball milling time reached 9 h. Subsequently, the microhardness of BNC-Cu slightly fluctuated around this value. Because there were numerous triple grain boundaries and the interaction among different crystal defects in BNC-Cu, BNC-Cu showed outstanding thermal stability when it was annealed in the range of 100°C to 400°C.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1225
Author(s):  
Cristina García-Garrido ◽  
Ranier Sepúlveda Sepúlveda Ferrer ◽  
Christopher Salvo ◽  
Lucía García-Domínguez ◽  
Luis Pérez-Pozo ◽  
...  

In this work, a blend of Ti, Nb, and Mn powders, with a nominal composition of 15 wt.% of Mn, and balanced Ti and Nb wt.%, was selected to be mechanically alloyed by the following two alternative high-energy milling devices: a vibratory 8000D mixer/mill® and a PM400 Retsch® planetary ball mill. Two ball-to-powder ratio (BPR) conditions (10:1 and 20:1) were applied, to study the evolution of the synthesized phases under each of the two mechanical alloying conditions. The main findings observed include the following: (1) the sequence conversion evolved from raw elements to a transitory bcc-TiNbMn alloy, and subsequently to an fcc-TiNb15Mn alloy, independent of the milling conditions; (2) the total full conversion to the fcc-TiNb15Mn alloy was only reached by the planetary mill at a minimum of 12 h of milling time, for either of the BPR employed; (3) the planetary mill produced a non-negligible Fe contamination from the milling media, when the highest BPR and milling time were applied; and (4) the final fcc-TiNb15Mn alloy synthesized presents a nanocrystalline nature and a partial degree of amorphization.


2011 ◽  
Vol 412 ◽  
pp. 259-262
Author(s):  
Kai Jun Wang ◽  
Xiao Lan Cai ◽  
Hua Wang ◽  
Jin Hu ◽  
Yun Feng Zhang

Cu-Zn alloy was prepared by high energy ball milling of elemental copper and zinc by the Simoloyer attrition mill, the different parameters such as milling time, ball-to-powder ratio and rotational speeds were analyzed. The results show that the different Cu-Zn alloy phase can be produced by different ball milling parameters, It has been found that milling time is highly significant to refining process, and the ratios of ball to powder are also benefited to the new phase form.


2016 ◽  
Vol 869 ◽  
pp. 277-282
Author(s):  
Moisés Luiz Parucker ◽  
César Edil da Costa ◽  
Viviane Lilian Soethe

Solid lubricants have had good acceptance when used in problem areas where the conventional lubricants cannot be applied: under extreme temperatures, high charges and in chemically reactive environments. In case of materials manufactured by powder metallurgy, particles of solid lubricants powders can be easily incorporated to the matrix volume at the mixing stage. In operation, this kind of material provides a thin layer of lubricant that prevents direct contact between the surfaces. The present study aimed at incorporating particles of second phase lubricant (h-BN) into a matrix of nickel by high-energy ball milling in order to obtain a self-lubricating composite with homogeneous phase distribution of lubricant in the matrix. Mixtures with 10 vol.% of h-BN varying the milling time of 5, 10, 15 and 20 hours and their relationship ball/powder of 20:1 were performed. The effect of milling time on the morphology and microstructure of the powders was studied by X-ray diffraction, SEM and EDS. The composite powders showed reduction in average particle size with increasing milling time and the milling higher than 5 hours resulted in equiaxial particles and the formation of nickel boride.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1956
Author(s):  
Zhicheng Yan ◽  
Yan Liu ◽  
Shaopeng Pan ◽  
Yihua Hu ◽  
Jing Pang ◽  
...  

Melt-spun metallic Al86Ni9La5 glassy ribbons solidified at different circumferential speeds (Sc) were subjected to high-energy ball milling at room and cryogenic temperatures. Crystallization induced by milling was found in the Al86Ni9La5 solidified at lower circumferential speed (Sc = 14.7 m/s), while the Al86Ni9La5 with Sc = 36.6 m/s kept amorphous. Besides, a trend of structural rejuvenation during milling process was observed, as the onset temperatures (Tx1, Tx2) and the crystallization enthalpies (ΔH1, ΔH2) first decreased and then increased along with the milling time. We explored the structural origin of crystallization by ab initio molecular dynamic simulations and found that the tricapped trigonal prism (TTP) Ni-centered clusters with a higher frequency in samples solidified at a lower cooling rate, which tend to link into medium-range orders (MROs), may promote crystallization by initiating the shear bands during milling. Based on the deformation mechanism and crush of metallic glasses, we presented a qualitative model to explain the structural rejuvenation during milling.


Sign in / Sign up

Export Citation Format

Share Document