scholarly journals Synthesis and characterization of screen-printed CdS films

2011 ◽  
Vol 43 (3) ◽  
pp. 335-341 ◽  
Author(s):  
V. Kumar ◽  
D.K. Sharma ◽  
M.K. Bansal ◽  
D.K. Dwivedi ◽  
T.P. Sharma

Cadmium sulphide films having energy band gap of 2.4 eV found applications in solar cells and electroluminescent devices. CdS polycrystalline films have been prepared on ultra-clean glass substrate by screen-printing technique and then sintered in air. Optimum conditions for preparing good quality screen-printed films have been found. The optical band gaps ?Eg? of the CdS films were determined from the UV transmission spectroscopy and were found to be 2.47eV. The Wurtzite structure of CdS films was confirmed by X-ray diffraction analysis. DC conductivity and activation energy of films was also measured in vacuum by two-probe technique.

2017 ◽  
Vol 9 (24) ◽  
pp. 3689-3695 ◽  
Author(s):  
C. Karuwan ◽  
A. Wisitsoraat ◽  
P. Chaisuwan ◽  
D. Nacapricha ◽  
A. Tuantranont

This work presents a new method for mass fabrication of a new microfluidic device with integrated graphene-based electrochemical electrodes by the screen printing technique for in-channel amperometric detection.


2012 ◽  
Vol 49 (2) ◽  
pp. 51-56
Author(s):  
A. Ogurcovs ◽  
Vj. Gerbreders ◽  
E. Tamanis ◽  
S. Gerbreders ◽  
G. Liberts

Photoelectric Properties of Screen-Printed Al-Doped ZnO Films The potential of cheap semiconductor materials in the area of solar energy use is illustrated by the example of zinc oxide (pure and Al-doped in various concentrations). Under investigation was the electric conductivity and photoelectric properties of ZnO thin films. The samples were prepared using screen-printing technique. The results of measurements point to non-linear relationships between Al concentration, photosensitivity and electrical conductivity of thin ZnO films. Optimal Al concentration for practical use of ZnO in photovoltaic devices is found to be ~ 1%. The experimental methods, technologies and results described in the paper could be used for further investigations in this area.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1055
Author(s):  
Lucía dos Santos-Gómez ◽  
Javier Zamudio-García ◽  
José M. Porras-Vázquez ◽  
Enrique R. Losilla ◽  
David Marrero-López

Lowering the operating temperature of solid oxide fuel cells (SOFCs) is crucial to make this technology commercially viable. In this context, the electrode efficiency at low temperatures could be greatly enhanced by microstructural design at the nanoscale. This work describes alternative microstructural approaches to improve the electrochemical efficiency of the BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY) cathode. Different electrodes architectures are prepared in a single step by a cost-effective and scalable spray-pyrolysis deposition method. The microstructure and electrochemical efficiency are compared with those fabricated from ceramic powders and screen-printing technique. A complete structural, morphological and electrochemical characterization of the electrodes is carried out. Reduced values of area specific resistance are achieved for the nanostructured cathodes, i.e., 0.067 Ω·cm2 at 600 °C, compared to 0.520 Ω·cm2 for the same cathode obtained by screen-printing. An anode supported cell with nanostructured BCFZY cathode generates a peak power density of 1 W·cm−2 at 600 °C.


2013 ◽  
Vol 544 ◽  
pp. 76-80
Author(s):  
Tao Feng ◽  
Jin Feng Xia ◽  
Hong Qiang Nian ◽  
De Xin Huang ◽  
Hai Fang Xu ◽  
...  

Mixed-potential-type NO2 sensor based on yttria-stabilized zirconia(YSZ) with NiO sensing electrode was prepared by the screen-printing technique and its physical characteristics were studied by the X-ray diffraction and scanning electron microscope. The response of electromotive force (EMF) and complex impedance of the sensor were tested under different NO2 concentrations and temperatures. The results show that, at the range of 550–750 °C, the EMF values are negative and almost linear to the logarithm of NO2 concentration. But the sensitivity of the sensor and the amplitude of the EMF response to NO2 concentration both obviously decrease with the increase of the work temperature. In addition, the semicircular arcs of the complex impedance spectra shrink regularly with a raise of NO2 concentration at 600 °C.


The light dependent resistor (LDR) are prepared using bulk CdS material and using conventional thick film technique. But bulk CdS and this conventional thick film technique gives lower inter-electrode spacing resulting poor response. In the present work, the CdS nanostructure was synthesized using hydrothermal reaction technique and with the help of screen printing technique, the CdS pattern having lower inter-electrode spacing resulting larger length of the CdS was prepared. As the inter electrode spacing increases the photocurrent also increases resulting enhancement of the sensor response. The work reported in the present paper provides the photo-sensor having higher sensitivity


2007 ◽  
Vol 1012 ◽  
Author(s):  
Syuusuke Nomura ◽  
Yoshihiro Matsuo ◽  
Takahiro Wada

AbstractWe successfully prepared (Cu1-XAgx)InSe2 solid solution with 0 ¡Ü x ¡Ü 1.0 by a mechanochemical process without any additional heating. The obtained fine powder was suitable for screen-printing. Particulate precursors were deposited in a thin layer by a screen-printing technique and then the porous precursor layer was sintered into a dense polycrystalline film by atmospheric-pressure firing. The crystal structures of the powder and the film were analyzed by x-ray diffraction and the microstructure of the film was observed in an SEM. For the (Cu1-XAgx)InSe2 films with x ¡Ü 0.2, the (Cu,Ag)InSe2 films had a good microstructure for the solar cell absorbers.


1998 ◽  
Vol 13 (9) ◽  
pp. 2623-2631 ◽  
Author(s):  
L. Durand ◽  
Ll. Balcells ◽  
A. Calleja ◽  
J. Fontcuberta ◽  
X. Obradors

We report here on the preparation of La2/3Sr1/3MnO3 magnetoresistive thick films on polycrystalline Al2O3 substates by using the screen printing technique. It is shown that films can be obtained using high temperature sintering. While there is a reacted layer, this improves adhesion and is not too troublesome if the films are made thick enough. It is shown that PbO–B2O3 –SiO2 glass additives allow sintering at lower temperatures and can be used to improve the mechanical stress of the films. However, it is found that glass concentrations large enough to significantly improve the film adherence result in a weak low field magnetoresistance probably because grains are coated with high resistivity material. Strategies to overcome these difficulties are discussed.


Sign in / Sign up

Export Citation Format

Share Document