scholarly journals Synthesis of anatase nanopowders by sol-gel method and influence of temperatures of calcination to their photocatalitic properties

2015 ◽  
Vol 47 (1) ◽  
pp. 41-49 ◽  
Author(s):  
A. Golubovic ◽  
B. Simovic ◽  
M. Scepanovic ◽  
D. Mijin ◽  
A. Matkovic ◽  
...  

The titanium dioxide (TiO2) nanopowders were produced by sol-gel technique from tetrabutyl titanate as a precursor, varying the temperature ?f calcination (from 500 to 550?C with the step of 10 ?C). XRPD results have shown that all synthesized nanopowders are dominantly in anatase phase. The analysis of the shift and linewidth of the most intensive anatase Eg Raman mode confirmed the XRPD results and added the presence of small amount of highly disordered brookite phase in all samples. The analysis of pore structure from nitrogen sorption experimental data described all samples as mesoporous, with mean pore diameters in the range of 1.5 and 4.5 nm. Nanopowder properties have been related to the photocatalytic activity, tested in degradation of the textile dye (C.I. Reactive Orange 16). The sample calcined at temperature of 510?C showed the best photocatalytic performance.

2016 ◽  
Vol 22 (1) ◽  
pp. 65-73
Author(s):  
Aleksandar Golubovic ◽  
Ivana Veljkovic ◽  
Maja Scepanovic ◽  
Mirjana Grujic-Brojcin ◽  
Natasa Tomic ◽  
...  

The titanium dioxide (TiO2) nanopowders were produced by sol-gel technique from tetrabutyl titanate as a precursor by varying some parameters of the sol-gel synthesis like the temperature (500 and 550 ?C) and the duration of the calcination (1.5, 2, and 2.5 h). X-ray powder diffraction (XRPD) results have shown that all synthesized nanopowders are dominantly in anatase phase, with the presence of a small amount of rutile in samples calcined at 550 ?C. According to the results obtained by Williamson-Hall method, the anatase crystallite size was increased with the duration of the calcination (from 24 to 29 nm in samples calcined at lower, and from 30 to 35 nm in samples calcined at higher temperature). The analysis of the shift and linewidth of the most intensive anatase Eg Raman mode confirmed the XRPD results. The analysis of pore structure from nitrogen sorption experimental data described all samples as mesoporous, with mean pore diameters in the range of 5-8 nm. Nanopowder properties have been related to the photocatalytic activity, tested in degradation of the textile dye (C.I. Reactive Orange 16), carbofuran and phenol.


2013 ◽  
Vol 665 ◽  
pp. 118-126
Author(s):  
Kirit S. Siddhapara ◽  
D.V. Shah

Nanocrystalline Fe-doped TiO2 was prepared by Sol-Gel technique, which was followed by freeze at-30°C temperature for 12hrs. The obtained Gel was thermally treated at 200,400,600 and 800°C. X-ray Powder Diffraction (XRD), Scanning Electron microscopy (SEM), UV-Vis Spectroscopy, Photo luminescence (PL) and EDAX was used to study its Structural and Optical properties. All Fe-doped TiO2 nanostructures show an appearance of Red shift relative to the bulk TiO2. The XRD pattern show the coexistence of major anatase phase and minor brookite phase for samples treated up to 600°C. Whereas at 800°C rutile is the only phase observed. All Fe doped TiO2 nanostructures show an appearance of Red shift relative to bulk undoped TiO2. The magnetic property by Gouy Balance of Fe doped TiO2 exhibit Peramagnetism at room temperature.


2013 ◽  
Vol 668 ◽  
pp. 13-16
Author(s):  
Qing Shan Li ◽  
Biao Zhan ◽  
Wei Hong ◽  
Guang Zhong Xing

Opal as a carrier, tetrabutyl titanate as a titanium source, TiO2 loaded on opal was prepared by sol-gel technique. The photocatalysts were characterized by XRD, TEM and UV-VIS absorption spectrum. Their photocatalytic activities were examined by the photocatalytic decolorization of methylene blue solution under UV light irradiation. The effects of calcination temperature, the amount of TiO2 loading and pH on photocatalytic activities were discussed. The results show that TiO2 supported on opal induced enhancement of photocatalytic decolorization rant and TiO2 doping is about 30 wt. % with 92.15% of decolorization rate at 700°C.


High purity barium titanate BaTiO3 was successfully synthesized by using the sol-gel technique. Barium acetate Ba(CH3COO)2 and tetrabutyl titanate, Ti(C4H9O)4 was dissolved moderately in the solvent of glacial acetic acid and ethanol was added as the chemical modifier. The synthesized BaTiO3 nanoparticle was calcined at the temperature range of 700 ºC to 1100 ºC. The powders were further characterized by X-ray diffraction and scanning electron microscopy (SEM). Fined BaTiO3 powders result indicates the phase of tetragonal structures and high crystallites of BaTiO3. It was observed that the crystallinity and particle size of BaTiO3 is greatly influenced by the calcination temperature.


2002 ◽  
Vol 740 ◽  
Author(s):  
A.D. Schmidt ◽  
S.B. Majumder ◽  
P.S. Dobal ◽  
R.S. Katiyar ◽  
D.C. Agrawal

ABSTRACTModifying their surface with a coating of another ceramic material can dramatically alter the properties of ceramic particles. In the present work we have demonstrated that the Al2O3 particles can be successfully coated by TiO2 using a novel sol-gel technique. The nature of these coatings was predicted on the basis of scanning electron microscopy imaging in conjunction with the micro-Raman scattering measurements. The surface morphology of these particles shows that either individual or group of sub-micron alumina particles are coated with the nano-crystalline titania particles. The thickness of the titania coating could be varied by changing the precursor sol concentration. Amorphous titania was converted to anatase phase at 400°C and upon further heating it started transforming to rutile phase, and both these phases coexisted in the coated particles that were heat treated up to 800°C. The mechanical strength of the titania coating was measured qualitatively by ultrasonicating the coated powders for longer duration to observe that titania coatings are strongly adhered with the alumina particles.


2005 ◽  
Vol 7 (4) ◽  
pp. 181-185 ◽  
Author(s):  
Hoda S. Hafez ◽  
A. El-Hag Ali ◽  
M. S. A. Abdel-Mottaleb

The paper reports on the photocatalytic efficiency ofTiO2nanoparticles immobilized on polyvinyl pyrrolidone/acrylic acid (PVP/AAc) copolymer hydrogels, which are prepared by means ofγ-rays induced homo- and copolymerization. The efficiency of immobilized photocatalyst is tested on a commercial textile dye namely Remazol Red RB-133. The results are compared with photocatalytic efficiencies of different types of non supportedTiO2photocatalysts such as aqueous slurries of colloidalTiO2prepared by sol-gel technique, and commercially available Degussa P25. Although less efficient than nonsupported ones, the hydrogel supportedTiO2photocatalyst has the practical advantages of easy separation and removal from the reactors. This makes it a viable technique for the safe disposal of textile wastewater into the water streams.


2016 ◽  
Vol 15 (01n02) ◽  
pp. 1650002 ◽  
Author(s):  
S. Lourduraj ◽  
R. Victor Williams

The nanocrystalline TiO2 powder was synthesized by sol–gel method. The XRD analysis reveals that TiO2 powder was highly crystalline (anatase phase) and nanostructured with tetragonal system. The average crystallite size after calcined at 673[Formula: see text]K is found to be 7.7[Formula: see text]nm. The surface morphological studies using scanning electron microscopy (SEM) exhibit that the formation of nanosized TiO2 particles with less densification nature. Atomic force microscopy (AFM) topography exhibits the uniform distribution of spherical-shaped particles. The energy dispersive X-ray spectroscopy (EDX) confirms the presence of Titanium and Oxygen in synthesized TiO2 nanopowder. The value of optical bandgap of TiO2 nanopowder calculated from UV-Visible spectrum is 3.45[Formula: see text]eV. The presence of TiO2 particles is confirmed from the dominant fourier transform infrared (FTIR) peaks at 621[Formula: see text]cm[Formula: see text] and 412[Formula: see text]cm[Formula: see text].


2010 ◽  
Vol 1279 ◽  
Author(s):  
S. Castillo ◽  
R. Camposeco ◽  
R. Carrera ◽  
M. Mujica ◽  
P.Del Ángel ◽  
...  

AbstractTiO2nanoparticles were synthesized by the Sol-Gel method by using 2-propanol as solvent in acid medium (pH1). The samples were annealed at 200 and 500°C and were characterized by BET, XRD-Rietveld refinements, TEM and FTIR. The activity was evaluated by the acetaldehyde photodecomposition in an isolated chamber with an initial concentration of contaminant of 300 ppmv with oxygen (2%) assisted with a 365-nm UV lamp. The test results were compared with those obtained with a commercial catalyst (P25). Improved photoactivity (≍100 % of acetaldehyde in 150 min) was obtained with catalysts annealed at 200°C (TiO2-P-200°C), that showed nanoparticles (≍7 nm) and abundant anatase phase (≍ 63 %) coexist with the brookite phase (≍ 37 %), as well as irregular equiaxial morphology. The samples annealed at 500°C (TiO2-P-500°C), showed an increment in nanoparticles (≍22 nm), different ratio and phase composition (anatase-brookite-rutile), and therefore less activity (≍80 %). This high activity could be explained by the special ratio of anatase-brookite and the dimension of nanometric crystal size. The aforementioned characteristics could be useful in the degradation of reactive organic gases like acetaldehyde either in confined spaces or in the open air.


2010 ◽  
Vol 113-116 ◽  
pp. 1945-1950 ◽  
Author(s):  
Jie Luo ◽  
Xin Yuan Yang ◽  
De Liang Li

Using cesium nitrate and strontium nitrate as doping metal ions source, Cs-doped TiO2 and Sr-doped TiO2 photocatalysts were successfully synthesized through the hydrolysis of tetrabutyl titanate by an acid-catalyzed sol-gel method. The photocatalytic activities of these catalysts prepared at 600 °C for 2 h were evaluated by the degradation of methyl orange in aqueous solution under solar light irradiation, and the as-prepared samples with higher photocatalytic efficiency were characterized by means of X-ray diffraction (XRD) and UV-Vis absorption spectroscopy. The XRD patterns indicate that the crystal structure still remains as anatase phase for the doped samples, and the average crystal size of TiO2, 0.1 at% Cs-doped TiO2 and 0.3 at% Sr-doped TiO2 is 21.3, 13.1 and 10.8 nm, respectively. The band gap absorption shows red shift to the visible region for the doped samples from the UV-Vis spectrogram. The results show that the photocatalytic activity of TiO2 nanoparticles doped with Cs+ and Sr2+ exhibits a significant improvement and their degradation efficiencies are more than 30% in comparison with those of TiO2 under the same condition, and the optimal doping concentration is determined to be 0.1 at% and 0.3 at% for Cs+ and Sr2+, respectively.


Sign in / Sign up

Export Citation Format

Share Document