scholarly journals Numerical evaluation of the elastic properties of carbon fiber reinforced composite material at elevated and lowered temperatures

2021 ◽  
Vol 53 (1) ◽  
pp. 127-136
Author(s):  
Alteer Saleem ◽  
Veljko Petrovic ◽  
Aleksandar Grbovic ◽  
Jasmina Lozanovic-Sajic ◽  
Igor Balac

The effect of elevated and lowered temperatures on the elastic properties of carbon fiber-epoxy composite material was studied using multi-phase unit cell (MPUC) numerical model. Evaluation of the elastic properties of carbon fiber-epoxy composite material is based on the finite element method. Obtained results confirmed that elevated and lowered temperature has noticeable influence on elastic properties of carbon fiber-epoxy composite material. As demonstrated, this fact has considerable influence on accurate evaluation of generated thermal stresses in real laminated composite structures, exposed to extremely high or low operating temperatures.

Author(s):  
David H. Bassir ◽  
WeiHong Zhang ◽  
Jose´ L. Zapico

In this article, complexities related to the multicriteria (multiobjective) optimization of laminated composite structures subjected to technological constraints we will be presented. So, various technological constraints will be presented and a strategy of handling each constraint (in order to use the multiobjective optimization tools based on genetic algorithms) will be also introduced.


2011 ◽  
Vol 110-116 ◽  
pp. 1161-1165
Author(s):  
Hamid Soltani ◽  
S.M.Mohseni Shakib ◽  
M. Asadi ◽  
M.K. Ramezani

This paper aims at developing the numerical of delamination in laminated composite structures. Formation of initial delamination and growth of existing delamination in HAT-Section laminated made of plies of unidirectional carbon fiber reinforced epoxy resin is investigated computationally. Tsai-Hill failure method is employed to predict delamination initiation while delamination propagation is analyzed using linear elastic fracture mechanics (LEFM).The techniques based on LEFM that have been utilized successfully within the framework of the finite element method (FEM) for the simulation of delamination growth, the virtual crack closer technique (VCCT). Finally this paper proposes future work for precise prediction of delamination of unidirectional carbon fiber reinforced epoxy resin HAT-Section specimens.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2583 ◽  
Author(s):  
R. Brian Jenkins ◽  
Peter Joyce ◽  
Adam Kong ◽  
Charles Nelson

Prior research has demonstrated that distributed optical fiber sensors (DOFS) based on Rayleigh scattering can be embedded in carbon fiber/epoxy composite structures to rapidly detect temperature changes approaching 1000 °C, such as would be experienced during a high energy laser strike. However, composite structures often experience mechanical strains that are also detected during DOFS interrogation. Hence, the combined temperature and strain response in the composite can interfere with rapid detection and measurement of a localized thermal impulse. In this research, initial testing has demonstrated the simultaneous response of the DOFS to both temperature and strain. An embedded DOFS network was designed and used to isolate and measure a localized thermal response of a carbon fiber/epoxy composite to a low energy laser strike under cyclic bending strain. The sensor interrogation scheme uses a simple signal processing technique to enhance the thermal response, while mitigating the strain response due to bending. While our ultimate goal is rapid detection of directed energy on the surface of the composite, the technique could be generalized to structural health monitoring of temperature sensitive components or smart structures.


Author(s):  
Chongyao Zhou ◽  
Zhiming Huang ◽  
Yongtian Kang ◽  
Dagang Zhang ◽  
Naiquan Ye ◽  
...  

Flexible pipe has been widely used in offshore industry for many years. The traditional composite structure of flexible pipe consists of many layers, including multiple metallic layers, such as tensile armor, pressure armor and carcass, as well as nonmetallic layers, such as sheath and liner. Typical flexible pipe is heavy and requires complex manufacturing process, especially pressure armor and carcass manufacturing. Therefore, there is a desire to find a replacement to pressure armor and carcass. With the recent development of a new composite material with lighter weight and higher strength, it now becomes possible. This new composite material is called epoxy compounded carbon fiber (EP/CF). Carbon fiber is 10 times stronger than steel, while it is only 1/5 of the steel weight. Epoxy protects carbon fiber from environmental conditions such as high temperature and corrosion, also bond carbon fiber together and help to redistribute the loading between carbon fibers. This paper is to present a new concept of flexible pipe by applying the EP/CF material to flexible design. In this new flexible concept, EP/CF is used to strengthen the inner sheath by surface activation treatment of sheath material. This provides excellent hoop strength to resist the inner pressure, hence provides a good replacement to the pressure armor and carcass. A new FEA analysis method with ABAQUS is also presented in this paper. In the analysis approach, all helix fibers are modelled using predefined beam element, and EP/CF reinforced inner sheath is modeled using laminated composite shell. Nonlinear FEA analysis is carried out in ABAQUS to investigate the tension and bending behavior of flexible pipe with reinforced inner sheath, including the performance of inner pressure resistance, which is one of the key performances. Analysis is also carried out to study the benefit of using EP/CF on outer sheath reinforcement for collision protection. Lastly, the economics and feasibility of this concept are discussed, and conclusions are drawn.


2020 ◽  
Vol 9 (1) ◽  
pp. 1170-1182
Author(s):  
Muhammad Razlan Zakaria ◽  
Hazizan Md Akil ◽  
Mohd Firdaus Omar ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Aslina Anjang Ab Rahman ◽  
...  

AbstractThe electrospray deposition method was used to deposit carbon nanotubes (CNT) onto the surfaces of woven carbon fiber (CF) to produce woven hybrid carbon fiber–carbon nanotubes (CF–CNT). Extreme high-resolution field emission scanning electron microscopy (XHR-FESEM), X-ray diffraction (XRD), Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the woven hybrid CF–CNT. The results demonstrated that CNT was successfully and homogenously distributed on the woven CF surface. Woven hybrid CF–CNT epoxy composite laminates were then prepared and compared with woven CF epoxy composite laminates in terms of their flexural and dielectric properties. The results indicated that the flexural strength, flexural modulus and dielectric constant of the woven hybrid CF–CNT epoxy composite laminates were improved up to 19, 27 and 25%, respectively, compared with the woven CF epoxy composite laminates.


Sign in / Sign up

Export Citation Format

Share Document