scholarly journals Test of total heat flux from wood crib fire in and outside compartment

2007 ◽  
Vol 11 (2) ◽  
pp. 197-206 ◽  
Author(s):  
Xu Qiang ◽  
Gregory Griffin ◽  
Christopher Preston ◽  
Ashley Bicknell ◽  
Glenn Bradbury ◽  
...  

Woo d crib fires were studied by using of ISO 9705 Room. These free burning tests with different heat release rate were conducted inside room and outside room (under the hood). Thermal condition around crib fire was measured by using of thermocouples, total heat flux gauge, gas concentration analyzer, and standard instrumentations for heat release rate measurement in ISO 9705 Room. This paper focuses on the total heat flux to the surrounding area from wood crib fire. The correlation between heat release rate and total heat flux is presented. Wall and space effect is also analyzed.

2011 ◽  
Vol 311-313 ◽  
pp. 2142-2145 ◽  
Author(s):  
Ying Tao Liu

The fire-resistant properties of FRW fire-retardant particleboard and untreated particleboard had been measured under a heat flux of 75 kW/m2 by cone calorimeter (CONE). Through the compare between FRW fire-retardant particleboard and untreated particleboard, the influence on the particleboard by FRW fire retardant had been indicated. The results showed that the indexes of heat release rate (HRR), total heat release (THR) and efficient heat combustion (EHC) etc of FRW fire-retardant particleboard were obviously reduced contrast to the ordinary particleboard, but the char-forming rate had a high increase.


2010 ◽  
Vol 75 (658) ◽  
pp. 1009-1017
Author(s):  
Hiroyuki SUNAHARA ◽  
Takahiro ISHIHARA ◽  
Ken MATSUYAMA ◽  
Shin'ichi SUGAHARA ◽  
Masahiro MORITA

Author(s):  
Akihiko Tsunemi ◽  
Yoshihiro Horiko ◽  
Masayasu Shimura ◽  
Naoya Fukushima ◽  
Seiji Yamamoto ◽  
...  

Direct numerical simulations of turbulent hydrogen/air and methane/air premixed flames in a rectangular constant volume vessel have been conducted with considering detailed kinetic mechanism to investigate flame behaviors and heat losses. For the hydrogen cases, since heat release rate increases with pressure rise due to dilatation during combustion in the constant vessel, heat flux on a wall also increases. For the methane cases, the pressure increase does not raise wall heat flux significantly because of the decrescence of heat release rate caused by thermo-chemical reaction near a wall. Pressure waves caused by wall reflection fluctuate flame propagation for the hydrogen flames. Flame displacement speed decreases remarkably at the moment when the pressure wave passes through flame fronts from unburnt side to burnt side. However, the turbulent burning velocity at that time does not decrease because of increases of fluid velocity normal to the flame fronts.


2013 ◽  
Vol 726-731 ◽  
pp. 4280-4287 ◽  
Author(s):  
Jozef Martinka ◽  
Emília Hroncová ◽  
Tomáš Chrebet ◽  
Karol Balog

This article deals with comparison of the behaviour of spruce wood and polyolefins (polyethylene PE and polypropylene PP) during the test on the cone calorimeter. Samples were tested on the cone calorimeter at heat flux of 20 and 40 kW/m2. An evaluation of the behaviour of examined materials was based on the determination of the maximum and the average heat release rate, yield of carbon monoxide (CO), and relative comparison of tendency to fire propagation in a flashover phase. The tendency of materials to fire propagation in the flashover phase was evaluated based on the Pearson ́s correlation, the Spearman ́s correlation and the Kendall ́s correlation coefficient of HRR-CO and CO2-CO. Spruce wood showed better properties in comparison with PE and PP in all evaluated parameters (the maximum and the average heat release rate, the yield of CO, and also the resistance to fire propagation in the flashover phase. Additionally, spruce wood showed significantly lower sensitivity of dependence of the maximum and also the average heat release rate on external heat flux.


2003 ◽  
Vol 21 (1) ◽  
pp. 55-65 ◽  
Author(s):  
Jingwei Ji ◽  
Liz-Hong Yang ◽  
Xiaojun Chen ◽  
Weicheng Fan

Author(s):  
Kohyu Satoh ◽  
Liu Naian ◽  
Liu Qiong ◽  
K. T. Yang

In large-scale forest fires and city fires, merging fires and fire whirls have often been observed, which cause substantial casualties and property damages. It is important to know particularly where and under what conditions of weather such merging fires and fire whirls appear in cities or forests. However, there have been no adequate answers, since the detailed physical characteristics about them are not fully clarified yet, although previous studies have examined the phenomena of merging flames. Therefore, we have carried out preliminary studies and found that the merged tall fires can enhance the fire spread, and developed a method to analyze burn-out data of fire arrays. If sufficient knowledge can be obtained by relevant experiments and numerical computations, it may be possible to mitigate the damages due to merged fires and fire whirls. The objective of this study is to investigate the merging conditions of fires in square arrays in laboratory experiments and also by CFD numerical simulations, varying the size of square array, inter-fire distance and heat release rate, to judge ‘unmerged’ or ‘merged’ conditions in the fire array. It has been found that the fire merging is dependent on the inter-fire distance in the array and also on the total heat release rate of all fires surrounding the center region of the array. Also found that the experimental and simulated results on the merged and unmerged cases in the fire array, as affected by the total heat release rate and the inter-fire distance, which control the convective gas flow into the array, behave very similarly. Therefore, it can be concluded that the fire merging in array fires are highly based on the convection in the flow field due to fires and can be predicted by simple CFD simulations.


Author(s):  
Qiang Xu ◽  
G. J. Griffin ◽  
XuHong Miao ◽  
ZhenYu Xu ◽  
Y. Jiang

Tests were conducted with ISO 9705 room to investigate the combustion behavior of medium size wood cribs. Cribs were burnt at the center and corner inside ISO room and also under the hood of the ISO room. Effective heat of combustion and increase rate of heat release rate in growth phase is compared for cribs with different nominal heat release rate and in different positions. The relationship between scaled steady mass loss rate and porosity factor of wood crib is quite different from those in literatures. The average effect heat of combustion is 12.18 MJ kg−1, which is close to commonly accepted value 12 MJ kg−1 for wood sample burning with diffusion flame.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1297
Author(s):  
Marouane El El Gazi ◽  
Rodolphe Sonnier ◽  
Stéphane Giraud ◽  
Marcos Batistella ◽  
Shantanu Basak ◽  
...  

In this study, a representative set of thermally thin materials including various lignocellulosic and synthetic fabrics, dense wood, and polypropylene sheets were tested using a cone calorimeter at different heat fluxes. Time-to-ignition, critical heat flux, and peak of heat release rate (pHRR) were the main parameters considered. It appears that the flammability is firstly monitored by the sample weight. Especially, while the burning rate of thermally-thin materials does never reach a steady state in cone calorimeter, their pHRR appears to be mainly driven by the fire load (i.e., the product of sample weight and effective heat of combustion) with no or negligible influence of textile structure. A simple phenomenological model was proposed to calculate the pHRR taking into account only three parameters, namely heat flux, sample weight, and effective heat of combustion. The model allows predicting easily the peak of heat release rate, which is often considered as the main single property informing about the fire hazard. It also allows drawing some conclusions about the flame retardant strategies to reduce the pHRR.


2021 ◽  
Vol 35 (1) ◽  
pp. 20-27
Author(s):  
Seok-Hui Lee ◽  
Min-Ho Kim ◽  
Sangkyu Lee ◽  
Ju-Eun Lee ◽  
Min-Chul Lee

In this study, combustion and smoke characteristics according to the aging of class 1E cables in nuclear power plants were analyzed through a cone calorimeter test. In the case of combustion characteristics, during the early period, which was the first peak of the heat release rate, the peak value of the non-aged cable was higher by approximately 20-50 kW/m<sup>2</sup> than that of aged cables. However, in the mid-late periods, which was the second peak, the value of the aged cables were higher than the non-aged cable due to the decrease in flame retardant performance with aging deterioration. In addition, the duration of the char layer of the aged cables was shortened by 200 s than that of the non-aged cables due to the unstable formation of char layer. The total heat release measured was approximately 1.4 times higher in the aged cables than in the non-aged cables. In the case of smoke characteristics, the smoke production rate and total smoke release show a similar trend with the heat release rate and total heat release. The total smoke release of the aged cables was measured to be higher than that of the non-aged cables. The tendency of the smoke factor increased with aging deterioration, and the values of the smoke factor in the aged cables beyond 4 years were approximately 1.76-2.0 times different from those in the non-aged cables. Consequently, the smoke risk increased with aging deterioration. Therefore, the risk of heat and smoke release increased as aging progressed.


2011 ◽  
Vol 332-334 ◽  
pp. 1335-1338
Author(s):  
Shu Gan Li ◽  
Xiao Ning Jiao ◽  
Qing Long Jia

This paper demonstrates the combustibility of PI needle punched nonwovens by Cone Calorimeter. Ignition parameter, heat release parameters, smoke and toxicity parameters and mass loss parameters of the fabric were obtained from it. It was found that ignition time is 38 s; the peak of heat release rate is 65 kW/m2; total heat release is 7 MJ/m2; smoke release rate is 1.5 L/s; smoke factor is 1.3 MW/m2 and mass lose rate is 73.3%. Therefore the results show that PI needle punched nonwovens has excellent fire-resistance performance.


Sign in / Sign up

Export Citation Format

Share Document