scholarly journals The influence of the magnetic field on the ionized gas flow adjacent to the porous wall

2010 ◽  
Vol 14 (suppl.) ◽  
pp. 183-196
Author(s):  
Slobodan Savic ◽  
Branko Obrovic ◽  
Milan Despotovic ◽  
Dusan Gordic

This paper studies the influence of the magnetic field on the planar laminar steady flow of the ionized gas in the boundary layer. The present outer magnetic field is homogenous and perpendicular to the body within the fluid. The gas of the same physical characteristics as the gas in the main flow is injected (ejected) through the contour of the body. The governing boundary layer equations for different forms of the electroconductivity variation law are transformed, brought to a generalized form and solved numerically in a four-parametric approximation. It has been determined that the magnetic field, through the magnetic parameter, has a great influence on certain quantities and characteristics of the boundary layer. It has also been shown that this parameter has an especially significant influence on the non-dimensional friction function, and hence the boundary layer separation point.

2004 ◽  
Vol 31 (1) ◽  
pp. 47-71 ◽  
Author(s):  
Branko Obrovic ◽  
Slobodan Savic

This paper investigates the ionized gas flow in the boundary layer, when the contour of the body within the fluid is porous. Ionized gas is exposed to the influence of the outer magnetic field induction Bm = Bm(x), which is perpendicular to the contour of the body within the fluid. It is presumed that the electroconductivity of the ionized gas is a function only of the longitudinal coordinate, i.e. ? = ?(x). By means of adequate transformations, the governing boundary layer equations are brought to a generalized form. The obtained generalized equations are solved in a four-parameter localized approximation. Based on the obtained numerical solutions, diagrams of important physical values and characteristics of the boundary layer have been made. Conclusions have also been drawn.


2010 ◽  
Vol 14 (1) ◽  
pp. 89-102
Author(s):  
Slobodan Savic ◽  
Branko Obrovic ◽  
Dusan Gordic ◽  
Sasa Jovanovic

This paper studies the laminar boundary layer on a body of an arbitrary shape when the ionized gas flow is planar and steady and the wall of the body within the fluid porous. The outer magnetic field is perpendicular to the fluid flow. The inner magnetic and outer electric fields are neglected. The ionized gas electroconductivity is assumed to be a function of the longitudinal velocity gradient. Using transformations, the governing boundary layer equations are brought to a general mathematical model. Based on the obtained numerical solutions in the tabular forms, the behavior of important non-dimensional quantities and characteristics of the boundary layer is graphically presented. General conclusions about the influence of certain parameters on distribution of the physical quantities in the boundary layer are drawn.


2016 ◽  
Vol 20 (2) ◽  
pp. 529-540
Author(s):  
Slobodan Savic ◽  
Branko Obrovic ◽  
Nebojsa Hristov

The ionized gas flow in the boundary layer on bodies of revolution with porous contour is studied in this paper. The gas electroconductivity is assumed to be a function of the longitudinal coordinate x. The problem is solved using Saljnikov's version of the general similarity method. This paper is an extension of Saljnikov?s generalized solutions and their application to a particular case of magnetohydrodynamic (MHD) flow. Generalized boundary layer equations have been numerically solved in a four-parametric localized approximation and characteristics of some physical quantities in the boundary layer has been studied.


2005 ◽  
Vol 32 (2) ◽  
pp. 165-190 ◽  
Author(s):  
Branko Obrovic ◽  
Dragisa Nikodijevic ◽  
Slobodan Savic

This paper studies the ideally dissociated air flow in the boundary layer when the contour of the body within the fluid is porous. By means of adequate transformations, the governing boundary layer equations of the problem are brought to a general form. The obtained equations are numerically solved in a three-parametric localized approximation. Based on the obtained solutions, very important conclusions about behavior of certain boundary layer physical values and characteristics have been drawn.


2006 ◽  
Vol 33 (2) ◽  
pp. 149-179 ◽  
Author(s):  
Slobodan Savic ◽  
Branko Obrovic

This paper investigates ionized gas flow in the boundary layer when its electroconductivity is varied. The flow is planar and the contour is porous. At first, it is assumed that the ionized gas electroconductivity ? depends only on the longitudinal variable. Then we adopt that it is a function of the ratio of the longitudinal velocity and the velocity at the outer edge of the boundary layer. For both electroconductivity variation laws, by application of the general similarity method, the governing boundary layer equations are brought to a generalized form and numerically solved in a four-parametric three times localized approximation. Based on many tabular solutions, we have shown diagrams of the most important nondimensional values and characteristic boundary layer functions for both of the assumed laws. Finally, some conclusions about influence of certain physical values on ionized gas flow in the boundary layer have been drawn. .


Author(s):  
Ehsan Roohi ◽  
Masoud Darbandi ◽  
Vahid Mirjalili

The current research uses an unstructured direct simulation Monte Carlo (DSMC) method to numerically investigate supersonic and subsonic flow behavior in micro convergent–divergent nozzle over a wide range of rarefied regimes. The current unstructured DSMC solver has been suitably modified via using uniform distribution of particles, employing proper subcell geometry, and benefiting from an advanced molecular tracking algorithm. Using this solver, we study the effects of back pressure, gas/surface interactions (diffuse/specular reflections), and Knudsen number, on the flow field in micronozzles. We show that high viscous force manifesting in boundary layers prevents supersonic flow formation in the divergent section of nozzles as soon as the Knudsen number increases above a moderate magnitude. In order to accurately simulate subsonic flow at the nozzle outlet, it is necessary to add a buffer zone to the end of nozzle. If we apply the back pressure at the outlet, boundary layer separation is observed and a region of backward flow appears inside the boundary layer while the core region of inviscid flow experiences multiple shock-expansion waves. We also show that the wall boundary layer prevents forming shocks in the divergent part. Alternatively, Mach cores appear at the nozzle center followed by bow shocks and an expansion region.


2003 ◽  
Vol 13 (12) ◽  
pp. 3783-3789 ◽  
Author(s):  
F. E. SMITH ◽  
P. LANGLEY ◽  
L. TRAHMS ◽  
U. STEINHOFF ◽  
J. P. BOURKE ◽  
...  

Multichannel magnetocardiography measures the magnetic field distribution of the human heart noninvasively from many sites over the body surface. Multichannel magnetocardiogram (MCG) analysis enables regional temporal differences in the distribution of cardiac magnetic field strength during depolarization and repolarization to be identified, allowing estimation of the global and local inhomogeneity of the cardiac activation process. The aim of this study was to compare the spatial distribution of cardiac magnetic field strength during ventricular depolarization and repolarization in both normal subjects and patients with cardiac abnormalities, obtaining amplitude measurements by magnetocardiography. MCGs were recorded at 49 sites over the heart from three normal subjects and two patients with inverted T-wave conditions. The magnetic field intensity during depolarization and repolarization was measured automatically for each channel and displayed spatially as contour maps. A Pearson correlation was used to determine the spatial relationship between the variables. For normal subjects, magnetic field strength maps during depolarization (R-wave) showed two asymmetric regions of magnetic field strength with a high positive value in the lower half of the chest and a high negative value above this. The regions of high R-wave amplitude corresponded spatially to concentrated asymmetric regions of high magnetic field strength during repolarization (T-wave). Pearson-r correlation coefficients of 0.7 (p<0.01), 0.8 (p<0.01) and 0.9 (p<0.01) were obtained from this analysis for the three normal subjects. A negative correlation coefficient of -0.7 (p<0.01) was obtained for one of the subjects with inverted T-wave abnormalities, suggesting similar but inverted magnetic field and current distributions to normal subjects. Even with the high correlation values in these four subjects, the MCG was able to identify differences in the distribution of magnetic field strength, with a shift in the T-wave relative to the R-wave. The measurement of cardiac magnetic field distribution during depolarization and repolarization of normal subjects and patients with clinical abnormalities should enable the improvement of theoretical models for the explanation of the cardiac depolarization and repolarization processes.


1978 ◽  
Vol 33 (7) ◽  
pp. 749-760 ◽  
Author(s):  
G. E. J. Eggermont ◽  
P. W. Hermans ◽  
L. J. F. Hermans ◽  
H. F. P. Knaap ◽  
J. J. M. Beenakker

In a rarefied polyatomic gas streaming through a rectangular channel, an external magnetic field produces a heat flux perpendicular to the flow direction. Experiments on this “viscom agnetic heat flux” have been performed for CO, N2, CH4 and HD at room temperature, with different orientations of the magnetic field. Such measurements enable one to separate the boundary layer contribution from the purely bulk contribution by means of the theory recently developed by Vestner. Very good agreement is found between the experimentally determined bulk contribution and the theoretical Burnett value for CO, N2 and CH4 , yet the behavior of HD is found to be anomalous.


1994 ◽  
Vol 140 ◽  
pp. 185-189
Author(s):  
Y. Murata ◽  
R. Kawabe ◽  
M. Ishiguro ◽  
K.-I. Morita ◽  
T. Hasegawa ◽  
...  

AbstractWe have made aperture synthesis multifield observations of Orion Molecular Cloud-1 (OMC-1) in the CS (J=1-0) line using the Nobeyama Millimeter Array (NMA), and obtained 9” resolution maps over 10’ length. The OMC-1 ridge shows a wiggled structure. The position angle of whole the ridge is ~ 0° - 10°, but ~ 20° - 30°around the clumps. It is possible to make this structure by the magnetic field with a position angle of ~ 150°. We also found filamentary structures in the northwest of Orion-KL, with a length-width ratio of more than 25, which are made by the gas flow from Orion-KL.


Sign in / Sign up

Export Citation Format

Share Document