scholarly journals Application of exergoeconomic analysis for power plants

2018 ◽  
Vol 22 (6 Part A) ◽  
pp. 2653-2666
Author(s):  
Fatih Unal ◽  
Derya Ozkan

Currently, energy resources are rapidly consumed. Therefore, scientists and engi?neers study the effective use of energy. In the present study, a thermodynamic and exergoeconomic analysis was performed in a thermal power plant in Turkey. The study involved determining the thermodynamic properties of 27 node points in a thermal power plant unit, and this was followed by calculating energy and exergy values of every node. Mean exergy costs were calculated by establishing energy and exergy balances of the equipment with respect to the calculated results. Subsequently, lost and damaged energies and exergies were calculated, and exergoeconomic factors were determined. The equipments were compared with each other on a graph based on the obtained results. The maximum rate of exergy loss and cost of exergy destruction corresponded to 79.5% and 886,66 $/h, respectively. The maximum exergy losses in a thermal power plant occurred in the boiler, turbine groups, condenser, heating group, pumps, and auxiliary groups. The highest and second highest law efficiencies of the studied thermal power plant corresponded to 32.3% and 28.5%, respectively. The study also involved presenting suggestions for improvement. Additionally, exergoeconomic analyses were conducted while considering the power plants? investment and equipment maintenance costs. It is expected that the calculation method and the obtained results can be applied to other thermal power plants.

2018 ◽  
Vol 22 (Suppl. 5) ◽  
pp. 1601-1612 ◽  
Author(s):  
Dejan Mitrovic ◽  
Branislav Stojanovic ◽  
Jelena Janevski ◽  
Marko Ignjatovic ◽  
Goran Vuckovic

Relying on coal as primary fuel in thermal power plants represents an unsustainable concept due to limited coal reserves and a negative environmental impact. Efficient utilization of coal reserves and a request for minimization of irreversibilities are imperative for thermal power plants operation. Numerous studies have shown that a steam boiler is a thermal power plant component with the highest irreversibility. The idea of this paper is to quantify the amounts and sources of irreversibilities within a steam boiler and its components, serving a 348.5MWe thermal power plant. Having this in mind, exergy and exergoeconomic analysis of a steam boiler is presented in this paper. Exergy destruction and exergy efficiency of all boiler components and of the boiler as a whole were calculated. Based on exergy flows and economic parameters (cost of the boiler, annual operation hours of the unit, maintenance factor, interest rate, operating period of the boiler), exergy analysis resulted in the cost of produced steam. The obtained results show that the boiler exergy efficiency is at 47.4%, with the largest exergy destruction occurring in the combustion chamber with a value of 288.07 MW (60.04%), and the smallest in the air heater with a value of 4.57 MW (0.95%). The cost of produced steam is calculated at 49,356.7 $/h by applying exergoeconomic analysis.


Vijayawada 210MW coal-based thermal power plant's energy and exergy analyses were conducted to assess the energetic and exegetic efficiencies and losses of various parts and the plant's general scheme. This coal-fired power plant, which consumes approximately 2,000 metric tons of coal, produces approximately 170 MW to 180 MW of electricity every day against installation ability of 210 mw the supply of energy to demand is declining throughout the world day by day. The increasing demand for energy has made power plants of science concern, but most power plants are built solely by the vigorous performance criteria based on the First Thermodynamics Law. The actual useful loss of energy cannot be justified by thermodynamics ' First Law because it does not distinguish between the quality and amount of energy. Thus, this current research deals with the comparison of coal-based thermal power plants electricity and exergy analyses. For calculation purposes, the entire plant cycle was divided into three areas: (1) only the turbo-generator with its inlets and outlets, (2) turbo-generator, condenser, feed pumps and regenerative heaters, (3) the entire cycle of boilers, turbochargers, condensers, feed pumps, regenerative heaters and auxiliary plants. The analyses were carried out considering information on this power plant's layout (50 percent, 80 percentand 100 percent) and operation information (57 percent and 67 percent loading condition). The plant's general energy efficiencies are 35.48 percent, 56.77 percent, 70.96 percent and 75.67 percent, and the general exergy efficiencies are a44.25 percent, 33.31 percent, 30.78 percent, and 30.21 percent, 50%, 80 percent, 100 percent of the design information. But the power plant's general energy and exergy efficiencies in operational information are 39.2%, 46.6% and 27.9%, 27.2% for 57% and 67% loading lower than the design value Specific CO2, SOx, NOx and particulates are also used to study the environmental impactof power plants. To find the irreversibility of the method, the distribution of exergy losses in power plant parts was evaluated. The comparison between the energy losses and the exergy losses of the plant's individual parts indicates that the highest power losses of 49.92% happen in the condenser, while the maximum exergy losses of 68.27% happen in the boiler. The analyses were also carried out one by one by inactivating the heater. Exergy assessment can be particularly efficient in defining methods to optimize the efficiency of current activities and plant design while energy equilibrium transfers heat between the device and its environment. Exergy-based operating and maintenance choices have been shown to be more efficient in decreasing inefficiencies in working power plants


2012 ◽  
Vol 58 (4) ◽  
pp. 351-356
Author(s):  
Mincho B. Hadjiski ◽  
Lyubka A. Doukovska ◽  
Stefan L. Kojnov

Abstract Present paper considers nonlinear trend analysis for diagnostics and predictive maintenance. The subject is a device from Maritsa East 2 thermal power plant a mill fan. The choice of the given power plant is not occasional. This is the largest thermal power plant on the Balkan Peninsula. Mill fans are main part of the fuel preparation in the coal fired power plants. The possibility to predict eventual damages or wear out without switching off the device is significant for providing faultless and reliable work avoiding the losses caused by planned maintenance. This paper addresses the needs of the Maritsa East 2 Complex aiming to improve the ecological parameters of the electro energy production process.


Author(s):  
Ye. G. Polenok ◽  
S. A. Mun ◽  
L. A. Gordeeva ◽  
A. A. Glushkov ◽  
M. V. Kostyanko ◽  
...  

Introduction.Coal dust and coal fi ring products contain large amounts of carcinogenic chemicals (specifically benz[a]pyrene) that are different in influence on workers of coal mines and thermal power plants. Specific immune reactions to benz[a]pyrene therefore in these categories of workers can have specific features.Objective.To reveal features of antibodies specifi c to benz[a]pyrene formation in workers of coal mines and thermal power plants.Materials and methods.The study covered A and G class antibodies against benz[a]pyrene (IgA-Bp and IgG-Bp) in serum of 705 males: 213 donors of Kemerovo blood transfusion center (group 1, reference); 293 miners(group 2) and 199 thermal power plant workers (group 3). Benz[a]pyrene conjugate with bovine serum albumin as an adsorbed antigen was subjected to immune-enzyme assay.Results.IgA-Bp levels in the miners (Me = 2.7) did not differ from those in the reference group (Me = 2.9), but in the thermal power plant workers (Me = 3.7) were reliably higher than those in healthy men and in the miners (p<0.0001). Levels of IgG-Bp in the miners (Me = 5.0) appeared to be lower than those in the reference group (Me = 6.4; (p = 0.05). IgG-Bb level in the thermal power plantworkers (Me = 7.4) exceeded the parameters in the healthy donors and the miners (p<0.0001). Non-industrial factors (age and smoking) appeared tohave no influence on specific immune reactions against benz[a]pyrene in the miners and the thermal power plant workers.Conclusions.Specific immune reactions against benz[a]pyrene in the miners and the thermal power plant workers are characterized by peculiarities: the miners demonstrate lower levels of class A serum antibodies to benz[a]pyrene; the thermal power plant workers present increased serum levels of class G antibodies to benz[a]pyrene. These peculiarities result from only the occupational features, but do not depend on such factors as age, smoking and length of service at hazardous production. It is expedient to study specific immune reactions to benz[a]pyrene in workers of coal mines and thermal power plants, to evaluate individual oncologic risk and if malignancies occur.


Author(s):  
Kajori Parial ◽  
S. Mukherjee ◽  
A. R. Ghosh ◽  
D. Sengupta

Coal combustion in thermal power plants releases ash. Ash is reported to cause different adverse health hazards in humans and other organisms. Owing to the presence of radionuclides, it is also considered as a potential radiation hazard. In this study, based on the surface radiation measurements and relevant ancillary data, expected radiation risk zones were identified with regard to the human population residing near the Thermal Power Plant. With population density as the risk determining criteria, about 20% of the study area was at &lsquo;High&rsquo; risk and another 20% of the study area was at &lsquo;Low&rsquo; risk zone. The remaining 60% was under medium risk zone. Based on the findings remedial measures which may be adopted have been suggested.


Akustika ◽  
2021 ◽  
pp. 133-137
Author(s):  
Vladimir Tupov ◽  
Vitaliy Skvortsov

The power equipment of thermal power plants is a source of noise to the surrounding area. One of the sources of noise for the surrounding area are gas distribution points (GDP) of thermal power plants (TPP) and district thermal power plants (RTS). Noise from gas distribution points may exceed sanitary standards at the border of the sanitary protection zone. The article shows that the radiated noise from gas distribution points depends on the power of the thermal power plant (natural gas consumption) and the type of valves. Three types of valves used in gas distribution points are considered. Formulas are obtained for calculating the width of the sanitary protection zone for gas distribution points for thermal stations, depending on the consumption of natural gas (electric power of the thermal power plant) and the type of valve. It is shown that, depending on the valve used, the noise level at the border of the sanitary protection zone can either meet sanitary standards or exceed them. This allows at the design stage to select the required type of valve or to determine mitigation measures from hydraulic fracturing.


Author(s):  
Suchismita Satapathy

All companies are dependent on their raw material providers. The same applies in the case of thermal power plants. The major raw material for a thermal power plant is the coal. There are a lot of companies which in turn provide this coal to the thermal power plant. Some of these companies are international; some are local, whereas the others are localized. The thermal power plants look into all the aspects of the coal providing company, before settling down for a deal. Some people are specifically assigned to the task of managing the supply chain. The main motive is to optimize the whole process and achieve higher efficiency. There are a lot of things which a thermal power plant looks into before finalizing a deal, such as the price, quality of goods, etc. Thus, it is very important for the raw material providers to understand each and every aspect of the demands of the thermal power plant. A combination of three methods—Delphi, SWARA, and modified SWARA—has been applied to a list of factors, which has later been ranked according to the weight and other relevant calculations.


2020 ◽  
Vol 143 (8) ◽  
Author(s):  
Siamak Hoseinzadeh ◽  
P. Stephan Heyns

Abstract In this article, energy, exergy, and environmental (3E) analysis of a 400 MW thermal power plant is investigated. First, the components of the power plant are examined in terms of energy consumption, and subsequently the energy losses, exergy destruction, and exergetic efficiency are obtained. It is shown that the highest energy losses are in the closed feedwater heaters Nos. 1 and 5 and the boiler with amounts of 7.6 × 10 J/s and 6.5 × 107 J/s, respectively. The highest exergy destruction occurs in the boiler and amounts to 4.13 × 108 J/s. The highest exergetic efficiency is 0.98 and is associated with the closed feedwater heaters Nos. 4 and 8. It is observed that the exergetic efficiency and exergy destruction in the boiler are the primarily affected by changes in the environmental temperature. Furthermore, by increasing the main pressure in the turbine, the load on the power plant is increased, and increasing the condenser pressure reduces the load on the power plant. In an environmental analysis, the production of pollutants such as SO2 production and CO2 emission has been investigated.


Sign in / Sign up

Export Citation Format

Share Document