scholarly journals Computational study of natural convection and entropy generation in 3-D cavity with active lateral walls

2020 ◽  
Vol 24 (3 Part B) ◽  
pp. 2089-2100
Author(s):  
Abdulwahab Alnaqi ◽  
Ahmed Hussein ◽  
Lioua Kolsi ◽  
Abdullah Al-Rashed ◽  
Dong Li ◽  
...  

Numerical simulation of the natural convection and entropy generation in an air-filled cubical cavity with active lateral walls is performed in this work. Both the lateral front and right sidewalls are maintained at an isothermal cold temperature. While an isothermal hot temperature is applied for both the lateral back and left sidewalls. The upper and lower walls are kept adiabatic. Entropy generation rates due to the fluid friction and the heat transfer are simulated by using the Second law of thermodynamics. Results are illustrated for Rayleigh numbers varied from (103 ? Ra ? 106). It was shown that the increase in the Rayleigh number leads to increase the average Nusselt number and to decrease the Bejan number. Also, it was found that both, Sth, and Stot, increase slightly with the increase in Rayleigh number until they reach (Ra = 105) and then begin to jump after this value. After (Ra = 105), the increase in both, Stot, and Sfr, is greater than Sth. Moreover, it was observed that iso-surfaces of Stot are similar to Sth at (103 ? Ra ? 105), while they are similar to Sfr at high Rayleigh number.

2015 ◽  
Vol 19 (5) ◽  
pp. 1621-1632 ◽  
Author(s):  
Mahmoud Salari ◽  
Ali Mohammadtabar ◽  
Mohammad Mohammadtabar

In this paper, entropy generation induced by natural convection of cu-water nanofluid in rectangular cavities with different circular corners and different aspect-ratios were numerically investigated. The governing equations were solved using a finite volume approach and the SIMPLE algorithm was used to couple the pressure and velocity fields. The results showed that the total entropy generation increased with the increase of Rayleigh number, irreversibility coefficient, aspect ratio or solid volume fraction while it decreased with the increase of the corner radius. It should be noted that the best way for minimizing entropy generation is decreasing Rayleigh number. This is the first priority for minimizing entropy generation. The other parameters such as radius, volume fraction, etc are placed on the second priority. However, Bejan number had an inverse trend compared with total entropy generation. As an exception, Bejan number and total entropy number had the same trend whenever solid volume fraction increased. Moreover, Nusselt number increased as Rayleigh number, solid volume fraction or aspect ratio increased whereas it decreases with the increase of corner radius.


2021 ◽  
Vol 39 (5) ◽  
pp. 1634-1642
Author(s):  
Syed Fazuruddin ◽  
Seelam Sreekanth ◽  
G Sankara Sekhar Raju

An exhaustive numerical investigation is carried out to analyze the role of an isothermal heated thin fin on fluid flow and temperature distribution visualization in an enclosure. Natural convection within square enclosures finds remarkable pragmatic applications. In the present study, a finite difference approach is performed on two-dimensional laminar flow inside an enclosure with cold side walls and adiabatic horizontal walls. The fluid flow equations are reconstructed into vorticity - stream function formulation and these equations are employed utilizing the finite-difference strategy with incremental time steps. The parametric study includes a wide scope of Rayleigh number, Ra, and inclination angle ϴ of the thin fin. The effect of different Rayleigh numbers ranging Ra = 104-106 with Pr=0.71 for all the inclination angles from 0°-360° with uniform rotational length of angle 450 of an inclined heated fin on fluid flow and heat transfer have been investigated. The heat transfer rate within the enclosure is measured by means of local and average Nusselt numbers. Regardless of inclination angles of the thin fin, a slight enhancement in the average Nusselt number is observed when Rayleigh number increased for both the cases of the horizontal and vertical position of the thin fin. When the fin has inclined no change in average Nusselt number is noticed for distinct Rayleigh numbers.


2017 ◽  
Vol 27 (12) ◽  
pp. 2696-2716 ◽  
Author(s):  
Hakan F. Öztop ◽  
Nadezhda S. Bondareva ◽  
Mikhail A. Sheremet ◽  
Nidal Abu-Hamdeh

Purpose The main aim of this work is to perform a numerical analysis on natural convection with entropy generation in a partially open triangular cavity with a local heat source. Design/methodology/approach The unsteady governing dimensionless partial differential equations with corresponding initially and boundary conditions were numerically solved by the finite difference method of the second-order accuracy. The effects of dimensionless time is studied, and other governing parameters are Rayleigh number (Ra = 103 − 105), Prandtl number (Pr = 6.82), heater length (w/L = 0.2, 0.4 and 0.6) and distance of heater ratio (δ/L = 0.3). Findings An increase in the Rayleigh number leads to an increment of the fluid flow and heat transfer rates. Average Bejan number decreases with Ra as opposed to the average Nusselt number and average entropy generation. High values of Ra characterize a formation of long-duration oscillating behavior for the average Nusselt number and entropy generation. Originality/value The originality of this work is to analyze the entropy generation in natural convection in a one side open and partial heater-located cavity. This is a good application for electronical systems or building design.


2016 ◽  
Vol 26 (8) ◽  
pp. 2492-2508 ◽  
Author(s):  
Lioua Kolsi ◽  
Nidal Abu-Hamdeh ◽  
Hakan F. Öztop ◽  
Abdulaziz Alghamdi ◽  
Borjini Mohamad Naceur ◽  
...  

Purpose The purpose of this paper is to provide a solution for natural convection in a cavity with a partial heater in case of volumetric heating and analysis of the entropy generation. Design/methodology/approach The control volume method based on three-dimensional (3D) vorticity-potential vector was applied to solve governing equations of natural convection in a 3D cavity with a fin for different governing parameters as external Rayleigh numbers (103=RaE=106), internal Rayleigh numbers 103=RaI=106, partition height (0.25=h=0.75) and partition location (0.25=c=0.75). A code was written by using Fortran platform. Findings The edge of the fin becomes important on entropy generation. The ratio of the RaI/RaE plays the important role on natural convection and entropy generation. The variation of external Rayleigh number becomes insignificant for the RaI/RaE>1. Originality/value The originality of this work is to analyze the entropy generation and natural convection in a cubical cavity with volumetrically heating.


2003 ◽  
Vol 125 (4) ◽  
pp. 624-634 ◽  
Author(s):  
Xundan Shi ◽  
J. M. Khodadadi

A finite-volume-based computational study of steady laminar natural convection (using Boussinesq approximation) within a differentially heated square cavity due to the presence of a single thin fin is presented. Attachment of highly conductive thin fins with lengths equal to 20, 35 and 50 percent of the side, positioned at 7 locations on the hot left wall were examined for Ra=104,105,106, and 107 and Pr=0.707 (total of 84 cases). Placing a fin on the hot left wall generally alters the clockwise rotating vortex that is established due to buoyancy-induced convection. Two competing mechanisms that are responsible for flow and thermal modifications are identified. One is due to the blockage effect of the fin, whereas the other is due to extra heating of the fluid that is accommodated by the fin. The degree of flow modification due to blockage is enhanced by increasing the length of the fin. Under certain conditions, smaller vortices are formed between the fin and the top insulated wall. Viewing the minimum value of the stream function field as a measure of the strength of flow modification, it is shown that for high Rayleigh numbers the flow field is enhanced regardless of the fin’s length and position. This suggests that the extra heating mechanism outweighs the blockage effect for high Rayleigh numbers. By introducing a fin, the heat transfer capacity on the anchoring wall is always degraded, however heat transfer on the cold wall without the fin can be promoted for high Rayleigh numbers and with the fins placed closer to the insulated walls. A correlation among the mean Nu, Ra, fin’s length and its position is proposed.


Author(s):  
Degan Gerard ◽  
Sokpoli Amavi Ernest ◽  
Akowanou Djidjoho Christian ◽  
Vodounnou Edmond Claude

This research was devoted to the analytical study of heat transfer by natural convection in a vertical cavity, confining a porous medium, and containing a heat source. The porous medium is hydrodynamically anisotropic in permeability whose axes of permeability tensor are obliquely oriented relative to the gravitational vector and saturated with a Newtonian fluid. The side walls are cooled to the temperature  and the horizontal walls are kept adiabatic. An analytical solution to this problem is found for low Rayleigh numbers by writing the solutions of mathematical model in polynomial form of degree n of the Rayleigh number. Poisson equations obtained are solved by the modified Galerkin method. The results are presented in term of streamlines and isotherms. The distribution of the streamlines and the temperature fields are greatly influenced by the permeability anisotropy parameters and the thermal conductivity. The heat transfer decreases considerably when the Rayleigh number increases.


Author(s):  
Didarul Ahasan Redwan ◽  
Md. Habibur Rahman ◽  
Hasib Ahmed Prince ◽  
Emdadul Haque Chowdhury ◽  
M. Ruhul Amin

Abstract A numerical study on natural convection heat transfer in a right triangular solar collector filled with CNT-water and Cuwater nanofluids has been conducted. The inclined wall and the bottom wall of the cavity are maintained at a relatively lower temperature (Tc), and higher temperature (Th), respectively, whereas the vertical wall, is kept adiabatic. The governing non-dimensional partial differential equations are solved by using the Galerkin weighted residual finite element method. The Rayleigh number (Ra) and the solid volume-fraction of nanoparticles (ϕ) are varied in the range of 103 ≤ Ra ≤ 106, and 0 ≤ ϕ ≤ 0.1, respectively, to carry out the parametric simulations within the laminar region. Corresponding thermal and flow fields are presented via isotherms and streamlines. Variations of average Nusselt number as a function of Rayleigh number have been examined for different solid volume-fraction of nanoparticles. It has been found that the natural convection heat transfer becomes stronger with the increment of solid volume fraction and Rayleigh number, but the strength of circulation reduces with increasing nanoparticles’ concentration at low Ra. Conduction mode dominates for lower Ra up to a certain limit of 104. It is also observed that when the solid volume fraction is increased from 0 to 0.1 for a particular Rayleigh number, the average Nusselt number is increased to a great extent, but surprisingly, the rate of increment is more pronounced at lower Ra. Moreover, it is seen that Cu-water nanofluid offers slightly better performance compared to CNT-water but the difference is very little, especially at lower Ra.


Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 363 ◽  
Author(s):  
Jong Hwi Lee ◽  
Jong-Hyeon Shin ◽  
Se-Myong Chang ◽  
Taegee Min

In this research, unsteady three-dimensional incompressible Navier–Stokes equations are solved to simulate experiments with the Boussinesq approximation and validate the proposed numerical model for the design of a circular fin-tube heat exchanger. Unsteady time marching is proposed for a time sweeping analysis of various Rayleigh numbers. The accuracy of the natural convection data of a single horizontal circular tube with the proposed numerical method can be guaranteed when the Rayleigh number based on the tube diameter exceeds 400, which is regarded as the limitation of numerical errors due to instability. Moreover, the effective limit for a circular fin-tube heat exchanger is reached when the Rayleigh number based on the fin gap size ( Ra s ) is equal to or exceeds 100. This is because at low Rayleigh numbers, the air gap between the fins is isolated and rarely affected by natural convection of the outer air, where the fluid provides heat resistance. Thus, the fin acts favorably when Ra s exceeds 100.


2020 ◽  
Vol 30 (11) ◽  
pp. 4811-4836 ◽  
Author(s):  
Seyyed Masoud Seyyedi ◽  
A.S. Dogonchi ◽  
M. Hashemi-Tilehnoee ◽  
D.D. Ganji ◽  
Ali J. Chamkha

Purpose Natural convection heat transfer analysis can be completed using entropy generation analysis. This study aims to accomplish both the natural convection heat transfer and entropy generation analyses for a hexagonal cavity loaded with Cu-H2O nanoliquid subjected to an oriented magnetic field. Design/methodology/approach Control volume-based finite element method is applied to solve the non-dimensional forms of governing equations and then, the entropy generation number is computed. Findings The results portray that both the average Nusselt and entropy generation numbers boost with increasing aspect ratio for each value of the undulation number, while both of them decrease with increasing the undulation number for each amplitude parameter. There is a maximum value for the entropy generation number at a specified value of Hartmann number. Also, there is a minimum value for the entropy generation number at a specified value of angle of the magnetic field. When the volume fraction of nanoparticles grows, the average Nusselt number increases and the entropy generation number declines. The entropy generation number attains to a maximum value at Ha = 14 for each value of aspect ratio. The average Nusselt number ascends 2.9 per cent and entropy generation number decreases 1.3 per cent for Ha = 0 when ϕ increases from 0 to 4 per cent. Originality/value A hexagonal enclosure (complex geometry), which has many industrial applications, is chosen in this study. Not only the characteristics of heat transfer are investigated but also entropy generation analysis is performed in this study. The ecological coefficient of performance for enclosures is calculated, too.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2942 ◽  
Author(s):  
Ammar I. Alsabery ◽  
Ishak Hashim ◽  
Ahmad Hajjar ◽  
Mohammad Ghalambaz ◽  
Sohail Nadeem ◽  
...  

The present investigation addressed the entropy generation, fluid flow, and heat transfer regarding Cu-Al 2 O 3 -water hybrid nanofluids into a complex shape enclosure containing a hot-half partition were addressed. The sidewalls of the enclosure are made of wavy walls including cold isothermal temperature while the upper and lower surfaces remain insulated. The governing equations toward conservation of mass, momentum, and energy were introduced into the form of partial differential equations. The second law of thermodynamic was written for the friction and thermal entropy productions as a function of velocity and temperatures. The governing equations occurred molded into a non-dimensional pattern and explained through the finite element method. Outcomes were investigated for Cu-water, Al 2 O 3 -water, and Cu-Al 2 O 3 -water nanofluids to address the effect of using composite nanoparticles toward the flow and temperature patterns and entropy generation. Findings show that using hybrid nanofluid improves the Nusselt number compared to simple nanofluids. In the case of low Rayleigh numbers, such enhancement is more evident. Changing the geometrical aspects of the cavity induces different effects toward the entropy generation and Bejan number. Generally, the global entropy generation for Cu-Al 2 O 3 -water hybrid nanofluid takes places between the entropy generation values regarding Cu-water and Al 2 O 3 -water nanofluids.


Sign in / Sign up

Export Citation Format

Share Document