scholarly journals Numerical study of turbulent natural convection of nanofluids in differentially heated rectangular cavities

2019 ◽  
pp. 444-444
Author(s):  
Zakaria Lafdaili ◽  
Sakina El-Hamdani ◽  
Abdelaziz Bendou ◽  
Karim Limam ◽  
Bara El-Hafad

In this work we study numerically the turbulent natural convection of nanofluids (water + AL2O3 / NTC / Cu) in rectangular cavities differentially heated. The objective is to compare the effect of the macrostructural aspect of the rectangular cavity and the effect of the types of nanofluids studied on the thermal exchange by turbulent natural convection in this type of geometry. Therefore, we have numerically treated the cases of these three nanofluids, for different particles volume fractions (0? ? ? 0.06) and for different form ratios of the rectangular cavity. The standard ? - ? turbulence model is used to take into account the effects of turbulence. The governing equations are discretized by the finite volume method using the power law scheme which offers a good stability characteristic in this type of flow. The results are presented in the form of streamlines and isothermal lines. The variation of the average Nusselt number is calculated as a function of the types of nanoparticles, of theirs particles volume fractions ?, for different form ratios of the cavity and for different Rayleigh numbers. The results show that the average Nusselt number is greater as the form ratio is large and that the effect of the use of carbon nanotubes (CNT) in suspension in a water prevails for voluminal fractions and large Rayleigh numbers.

2021 ◽  
pp. 57-57
Author(s):  
Zakaria Lafdaili ◽  
Sakina El-Hamdani ◽  
Abdelaziz Bendou ◽  
Karim Limam ◽  
Bara El-Hafad

In this work we study numerically the three-dimensional turbulent natural convection in a partially heated cubic cavity filled with water containing metallic nanoparticles, metallic oxides and others based on carbon.The objective is to study and compare the effect of the addition of nanoparticles studied in water and also the effect of the position of the heated partition on the heat exchange by turbulent natural convection in this type of geometry, which can significantly improve the design of heat exchange systems for better space optimization. For this we have treated numerically for different volume fractions the turbulent natural convection in the two cases where the cavity is heated respectively by a vertical and horizontal strip in the middle of one of the vertical walls. To take into account the effects of turbulence, we used the standard turbulence model ? - ?. The governing equations are discretized by the finite volume method using the power law scheme which offers a good stability characteristic in this type of flow. The results are presented in the form of isothermal lines and current lines. The variation of the mean Nusselt number is calculated for the two positions of the heated partition as a function of the volume fraction of the nanoparticles studied in water for different Rayleigh numbers.The results show that carbon-based nanoparticles intensify heat exchange by convection better and that the position of the heated partition significantly influences heat exchange by natural convection. In fact, an improvement in the average Nusselt number of more than 20% is observed for the case where the heated partition is horizontal.


2015 ◽  
Vol 19 (1) ◽  
pp. 155-166 ◽  
Author(s):  
Hasan Sajjadi ◽  
Reza Kefayati

In this paper Lattice Boltzmann simulation of turbulent natural convection with large-eddy simulations (LES) in tall enclosures which is filled by air with Pr=0.71 has been studied. Calculations were performed for high Rayleigh numbers (Ra=107-109) and aspect ratios change between 0.5 to 2 (0.5<AR<2). The present results are validated by finds of an experimental research at Ra=1.58x109. Effects of the aspect ratios in different Rayleigh numbers are displayed on streamlines, isotherm counters, vertical velocity and temperature at the middle of the cavity, local Nusselt number and average Nusselt number. The average Nusselt number increases with the augmentation of Rayleigh numbers. The increment of the aspect ratio causes heat transfer to decline in different Rayleigh numbers.


1970 ◽  
Vol 39 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Sumon Saha ◽  
Noman Hasan ◽  
Chowdhury Md Feroz

A numerical study has been carried out for laminar natural convection heat transfer within a two-dimensional modified square enclosure having a triangular roof. The vertical sidewalls are differentially heated considering a constant flux heat source strip is flush mounted with the left wall. The opposite wall is considered isothermal having a temperature of the surrounding fluid. The rest of the walls are adiabatic. Air is considered as the fluid inside the enclosure. The solution has been carried out on the basis of finite element analysis by a non-linear parametric solver to examine the heat transfer and fluid flow characteristics. Different heights of the triangular roof have been considered for the present analysis. Fluid flow fields and isotherm patterns and the average Nusselt number are presented for the Rayleigh numbers ranging from 103 to 106 in order to show the effects of these governing parameters. The average Nusselt number computed for the case of isoflux heating is also compared with the case of isothermal heating as available in the literature. The outcome of the present investigation shows that the convective phenomenon is greatly influenced by the inclined roof height. Keywords: Natural convection, triangular roof, Rayleigh number, isoflux heating. Doi:10.3329/jme.v39i1.1826 Journal of Mechanical Engineering, vol. ME39, No. 1, June 2008 1-7


2006 ◽  
Vol 129 (6) ◽  
pp. 717-726 ◽  
Author(s):  
Kamil Kahveci

This numerical study looks at laminar natural convection in an enclosure divided by a partition with a finite thickness and conductivity. The enclosure is assumed to be heated using a uniform heat flux on a vertical wall, and cooled to a constant temperature on the opposite wall. The governing equations in the vorticity-stream function formulation are solved by employing a polynomial-based differential quadrature method. The results show that the presence of a vertical partition has a considerable effect on the circulation intensity, and therefore, the heat transfer characteristics across the enclosure. The average Nusselt number decreases with an increase of the distance between the hot wall and the partition. With a decrease in the thermal resistance of the partition, the average Nusselt number shows an increasing trend and a peak point is detected. If the thermal resistance of the partition further declines, the average Nusselt number begins to decrease asymptotically to a constant value. The partition thickness has little effect on the average Nusselt number.


Author(s):  
G. A. Sheikhzadeh ◽  
M. Pirmohammadi ◽  
M. Ghassemi

Numerical study natural convection heat transfer inside a differentially heated square cavity with adiabatic horizontal walls and vertical isothermal walls is investigated. Two perfectly conductive thin fins are attached to the isothermal walls. To solve the governing differential mass, momentum and energy equations a finite volume code based on Pantenkar’s simpler method is developed and utilized. The results are presented in form of streamlines, isotherms as well as Nusselt number for Rayleigh number ranging from 104 up to 107. It is shown that the mean Nusselt number is affected by the position of the fins and length of the fins as well as the Rayleigh number. It is also observed that maximum Nusselt number occurs about the middle of the enclosure where Lf is grater the 0.5. In addition the Nusselt number stays constant and does not varies with width of the cavity (lf) when Lf is equal to 0.5 and Rayleigh number is equal to 104 and 107 as well as when Lf is equal to 0.6 and low Rayleigh numbers.


2021 ◽  
Vol 39 (5) ◽  
pp. 1634-1642
Author(s):  
Syed Fazuruddin ◽  
Seelam Sreekanth ◽  
G Sankara Sekhar Raju

An exhaustive numerical investigation is carried out to analyze the role of an isothermal heated thin fin on fluid flow and temperature distribution visualization in an enclosure. Natural convection within square enclosures finds remarkable pragmatic applications. In the present study, a finite difference approach is performed on two-dimensional laminar flow inside an enclosure with cold side walls and adiabatic horizontal walls. The fluid flow equations are reconstructed into vorticity - stream function formulation and these equations are employed utilizing the finite-difference strategy with incremental time steps. The parametric study includes a wide scope of Rayleigh number, Ra, and inclination angle ϴ of the thin fin. The effect of different Rayleigh numbers ranging Ra = 104-106 with Pr=0.71 for all the inclination angles from 0°-360° with uniform rotational length of angle 450 of an inclined heated fin on fluid flow and heat transfer have been investigated. The heat transfer rate within the enclosure is measured by means of local and average Nusselt numbers. Regardless of inclination angles of the thin fin, a slight enhancement in the average Nusselt number is observed when Rayleigh number increased for both the cases of the horizontal and vertical position of the thin fin. When the fin has inclined no change in average Nusselt number is noticed for distinct Rayleigh numbers.


2019 ◽  
Vol 23 (6 Part A) ◽  
pp. 3603-3614
Author(s):  
Nesrine Rachedi ◽  
Madiha Bouafia ◽  
Messaoud Guellal ◽  
Saber Hamimid

A numerical study of combined natural convection and radiation in a square cavity filled with a gray non-scattering semi-transparent fluid is conducted. The horizontal walls are adiabatic and the vertical are differentially heated. Convection is treated by the finite volumes approach and the discrete ordinates method is used to solve radiative transfer equation using S6 order of angular quadrature. Representative results illustrating the effects of the Rayleigh number, the optical thickness and the Planck number on the flow and temperature distribution are reported. In addition, the results in terms of the average Nusselt number obtained for various parametric conditions show that radiation modifies significantly the thermal behavior of the fluid within the enclosure.


1991 ◽  
Vol 113 (3) ◽  
pp. 194-199 ◽  
Author(s):  
M. M. Elshamy ◽  
M. N. Ozisik

The steady-state laminar natural convection for air bounded by a hot plate and a cold cylindrical enclosure has been studied numerically for the case of cold isothermal cylinder and hot isothermal plate. A correlation is presented for the average Nusselt number over the range of Rayleigh number from 105 to 106 for different values of the width-aspect ratio Sw and thickness aspect-ratio St of the plate. It is found that the average Nusselt number increases with increasing Sw and Rayleigh number. A two-cell pattern is observed for Sw=1.5 and less. The effect of Sw on the average Nusselt number is found to be stronger than that of St.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Chithra Devaraj ◽  
Eswaramurthi Muthuswamy ◽  
Sundararaj Kandasamy

Natural convection heat transfer in a two-dimensional square enclosure at various angles of inclination is investigated numerically using a finite volume based computational procedure. The heat transfer is from a constant temperature heat source of finite length centred at one of the walls to the cold wall on the opposite side while the remaining walls are insulated. The effect of area ratio of the heat sourceAfrom 0.2 to 1.0, Rayleigh number Ra from 103to 107, and angle of inclination of the enclosureθvarying from 0° to 360° on the flow field and heat transfer characteristics are investigated. Streamline and isothermal line patterns are found to be similar at low Rayleigh numbers whereas at high Rayleigh numbers the differences are significant due to the influence of the parameters considered. Average Nusselt number decreases drastically as the position of the heat source is moved above the horizontal centre line of the enclosure. Correlation of the average Nusselt number which depends on the parameters of interest is obtained in the general formCRamAn. The correlation coefficients are determined by multiple regression analysis for the entire range of Rayleigh numbers analysed and the values found by correlation equations are in good agreement with the numerical results.


Author(s):  
M. Lacroix

A numerical study has been conducted for natural convection heat transfer for air around two horizontal heated cylinders placed inside a rectangular enclosure cooled from the side. Three cylinder spacings were investigated. The local and overall Nusselt numbers were determined over the range of Rayleigh numbers from 104 to 106. It is found that the thermal performance of the unit is strongly influenced by the Rayleigh number and, to a lesser extent, by the cylinder spacing. A correlation is suggested for the overall Nusselt number.


Sign in / Sign up

Export Citation Format

Share Document