scholarly journals Simulation of CH4 recovery from hydrate deposits by injection of CO2

2019 ◽  
Vol 23 (Suppl. 2) ◽  
pp. 447-454
Author(s):  
Svetlana Belova ◽  
Angelina Chiglintseva ◽  
Marat Khasanov ◽  
Olga Dudareva ◽  
Vladislav Shagapov

The paper presents a mathematical model of CH4 recovery from gas hydrate deposits via injection of liquid CO2. The process of CH4 recovery is supposed to occur on the moving frontal boundary separating the deposit into two domains. The near domain is saturated with liquid CO2 and its hydrate while the far one is saturated with CH4 and its hydrate. Self-similar solutions describing the temperature and pressure fields were obtained. The effect of main parameters on the dynamics of the process under study was explored. It was revealed that at low temperatures of the CO2 being injected the temperature in the far domain did not exceed that of equilibrium for decomposition of CH4 gas hydrate. It was also found that with increasing pressure at which CO2 was injected into the gas hydrate do-main, the extension of the region saturated with CO2 hydrate was increasing.

2017 ◽  
Vol 12 (2) ◽  
pp. 219-226 ◽  
Author(s):  
A.S. Chiglintseva ◽  
V.Sh. Shagapov

The problem of injecting a hydrate-forming gas into a snow massif in the initial state saturated with the same gas are solved. Self-similar solutions describing the temperature and pressure fields, the distribution of snow, water, hydrate and gas saturation in the massif are constructed. It is shown that when forming a hydrate, depending on the initial thermobaric state of the ice-gas system, as well as the intensity of gas injection, it is possible to distinguish various characteristic zones in the filtration region that differ in their structure and length. It has been established that with an increase in the gas injection pressure and a decrease in the initial snow-saturation of the massif, the volume formation zone of the hydrate increases.


2021 ◽  
pp. 43-54
Author(s):  
A. N. Krutov ◽  
◽  
S. Ya. Shkol’nikov ◽  

The mathematical model of kinematic wave, that is widely used in hydrological calculations, is generalized to compute processes in deformable channels. Self-similar solutions to the kinematic wave equations, namely, the discontinuous wave of increase and the “simple” wave of decrease are generalized. A numerical method is proposed for solving the kinematic wave equations for deformable channels. The comparison of calculation results with self-similar solutions revealed a good agreement.


2019 ◽  
Vol 14 (1) ◽  
pp. 59-62
Author(s):  
M.N. Zapivakhina ◽  
D.A Umerov

The problem of ice formation in a dry, cold, porous medium saturated with ice and gas (air) when pumping warm water is considered in a flat one-dimensional self-similar formulation. The task was considered in volume area. During the injection of warm water from the beginning deep into the reservoir, it spread in a volume region that will divide the reservoir into 3 zones. The first zone was filled with water, the second zone was filled with ice and water, and the third zone was filled with ice and gas. To describe the process of heat and mass transfer, the following hypotheses were used: the temperature of the saturated substance (water, ice or gas) is equal to the temperature of the porous medium; ice and skeleton still; water, ice and skeleton of the reservoir are incompressible; skeletal porosity is constant. On the basis of constructed self-similar solutions, a numerical analysis was performed illustrating the effect of the initial parameters of a dry porous medium saturated with ice and gas, as well as the temperature of the injected water on the temperature and pressure distribution in the porous medium. It has been established that an increase in the temperature of the injected water does not lead to a significant increase in the area of ice decomposition. It is also established that if the pressure of the injected water is increased, this will not lead to a large increase in the area of ice decomposition. However, based on the results obtained, it can be seen that the speed of movement of the melting boundary increases, in particular, as the pressure increases by <i>p<sub>e</sub></i>=0.05 MPa, the intermediate region increases by one and a half times. It was found that it is economically more profitable to pump water with a lower temperature, because water with a higher temperature slightly increases the freezing area of the porous soil.


2008 ◽  
Vol 6 ◽  
pp. 178-183
Author(s):  
M.K. Khasanov ◽  
N.G. Musakaev

The features of the gas hydrates formation at the gas injection into the porous medium initially saturated with gas and water are considered. Self-similar solutions of the axisymmetric problem describing the distribution of the main parameters in a reservoir are constructed. The solutions have been found according to which the gas hydrate formation can occur at the frontal surface or in the extended area.


2012 ◽  
Vol 9 (1) ◽  
pp. 185-187
Author(s):  
V.Sh. Shagapov ◽  
N.G. Musakaev ◽  
R.R. Urazov

Based on the proposed mathematical model, a numerical study of sclerotic phenomena in a horizontal pipeline associated with sediments and gas hydrates on channel walls during the transportation of moist natural gas was carried out. Different conditions of gas transportation are considered: the pressure has a constant value at the inlet or outlet of the pipeline, or the pressure is constantly at both ends of the pipeline. The process of dissociation of gas hydrate deposits was studied when methanol was fed into the gas stream.


2014 ◽  
Vol 14 (1) ◽  
pp. 45
Author(s):  
Peyman Sabzi ◽  
Saheb Noroozi

Gas hydrates formation is considered as one the greatest obstacles in gas transportation systems. Problems related to gas hydrate formation is more severe when dealing with transportation at low temperatures of deep water. In order to avoid formation of Gas hydrates, different inhibitors are used. Methanol is one of the most common and economically efficient inhibitor. Adding methanol to the flow lines, changes the thermodynamic equilibrium situation of the system. In order to predict these changes in thermodynamic behavior of the system, a series of modelings are performed using Matlab software in this paper. The main approach in this modeling is on the basis of Van der Waals and Plateau's thermodynamic approach. The obtained results of a system containing water, Methane and Methanol showed that hydrate formation pressure increases due to the increase of inhibitor amount in constant temperature and this increase is more in higher temperatures. Furthermore, these results were in harmony with the available empirical data.Keywords: Gas hydrates, thermodynamic inhibitor, modelling, pipeline blockage


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1345
Author(s):  
Oleg Bazaluk ◽  
Kateryna Sai ◽  
Vasyl Lozynskyi ◽  
Mykhailo Petlovanyi ◽  
Pavlo Saik

Ukraine is an energy-dependent country, with less that 50% of its energy consumption fulfilled by its own resources. Natural gas is of paramount importance, especially for industry and society. Therefore, there is an urgent need to search for alternative and potential energy sources, such as gas hydrate deposits in the Black Sea, which can reduce the consumption of imported gas. It is necessary to refine the process parameters of the dissociation of gas hydrate deposits with a heterogeneous structure. The analyzed known geological–geophysical data devoted to the study of the offshore area and the seabed give grounds to assert the existence of a significant amount of hydrate deposits in the Black Sea. An integrated methodological approach is applied, which consists of the development of algorithms for analytical and laboratory studies of gas volumes obtained during the dissociation of deposits with a heterogeneous structure. These data are used for the computer modelling of the dissociation zone in the Surfer-8.0 software package based on the data interpolation method, which uses three methods for calculating the volumes of modelling bodies. A 3D grid-visualization of the studied part of the gas hydrate deposit has been developed. The dissociation zone parameters of gas hydrate deposits with different shares of rock intercalation, that is, the minimum and maximum diameters, have been determined, and the potentially recoverable gas volumes have been assessed. The effective time of the process of gas hydrate deposit dissociation has been substantiated. The obtained research results of the dissociation process of gas hydrate deposits can be used in the development of new technological schemes for gas recovery from the deep-water Black Sea area.


Sign in / Sign up

Export Citation Format

Share Document