The study of sclerotic phenomena in a horizontal pipeline during the flow of hydrocarbon gas

2012 ◽  
Vol 9 (1) ◽  
pp. 185-187
Author(s):  
V.Sh. Shagapov ◽  
N.G. Musakaev ◽  
R.R. Urazov

Based on the proposed mathematical model, a numerical study of sclerotic phenomena in a horizontal pipeline associated with sediments and gas hydrates on channel walls during the transportation of moist natural gas was carried out. Different conditions of gas transportation are considered: the pressure has a constant value at the inlet or outlet of the pipeline, or the pressure is constantly at both ends of the pipeline. The process of dissociation of gas hydrate deposits was studied when methanol was fed into the gas stream.

Author(s):  
Nail G. Musakaev ◽  
Stanislav L. Borodin ◽  
Marat K. Khasanov

Natural gas is one of the main energy carriers, for example, in 2014 it accounted for about 22% of the world’s electricity production. The main component of natural gas is methane (77-99%). The largest reserves of methane are concentrated in gas hydrates; according to different sources, their total volume twice exceeds the magnitude of the traditional recoverable reserves of methane. Thus, given the increasing demand and the largest amount compared with other fossil fuels, methane, extracted from gas hydrates, is the most promising source of energy. And for the effective extraction of methane from gas hydrate deposits, theoretical studies are needed.<br> In this paper we consider the problem of gas hydrate decomposition to gas and ice during the gas extraction from the hydrate-containing deposit initially saturated with methane and its hydrate. To solve this problem, we constructed the mathematical model of non-isothermal filtration of an imperfect gas with account of the formation or decomposition of this gas’ hydrate. On the basis of this model, the numerical study of the influence of gas mass flow rate on the dynamics of decomposition of the hydrate was made. It shows that in the case of negative initial temperatures of the reservoir, the dissociation of the gas hydrate will always occur to gas and ice. In this case, regimes of dissociation of the hydrate with a frontal surface or a volume region of phase transitions are possible. It is established that an increase in the mass flow rate of gas extraction first leads to the decomposition of the hydrate on a frontal surface, and then in a volume zone. A further increase in the gas mass flow rate leads to an increase in the length of the volume zone and an increase in the amount of the hydrate decomposed therein.


Author(s):  
S. V. Goshovskyi ◽  
Oleksii Zurian

The literature sources dealing with the history of gas hydrate studies and discovery of possible existence of gas hydrate deposits in natural conditions were analyzed. They contain facts proving that within 1966 and 1969 the conditions for formation of hydrates in porous medium were researched at the Department of Gas and Gas Condensate Deposits Development and Exploitation of Gubkin Russian State University of Oil and Gas. The first experiments were set up by the Ukraine-born Yurij F. Makogon, Department Assistant Professor. The results proved possibility of formation and stable existence of gas hydrates in earth’s crust and became a scientific substantiation of natural gas hydrate deposits discovery. In 1969 the exploitation of Messoyakha deposits in Siberia started and it was the first time when the natural gas was derived directly from hydrates. The same year that invention was officially recognized and registered. Following the comprehensive international expert examination the State Committee on Inventions and Findings of the USSR Council of Ministers assumed that the citizens of the USSR Yurij F. Makogon, Andrej A. Trofimuk, Nikolaj V. Cherskij and Viktor G. Vasilev made a discovery described as follows: “Experiments proved previously unknown ability of natural gas to form deposits in the earth’s crust in solid gas hydrate state under definite thermodynamic conditions (Request dated March 19, 1969)”. The authors were presented with diplomas on March 4, 1971. From then onwards the issue of natural gas hydrates existence was widely researched all around the world. In 1985 Yurij F. Makogon became a Professor. Since 1973 he was a head of the gas hydrate laboratory in the All-Russian Scientific Research Institute of Natural Gases and Gas Technologies. Within 1974–1987 he was a head of the gas hydrate laboratory in Oil and Gas Research Institute RAS. In 1992 he was invited by one of the largest universities of the USA to arrange modern laboratory for gas hydrate study. The laboratory was created in the Texas University, USA and in 1995 Yurij Makogon became its head. As far as interest in gas hydrates increases Yurij F. Makogon reports at 27 international congresses and conferences, gives lectures in 45 world leading universities, functions as an academic adviser and participates in different international programs on research and exploitation of gas hydrate deposits in USA, Japan and India. The heritage of the scientist includes 27 patents, eight monographs (four of them were translated and published in the USA and Canada) and more than 270 scientific articles.


2021 ◽  
Vol 2021 (2) ◽  
pp. 43-55
Author(s):  
Andrey Vitalievich Makagon

The article considers the modern problems and prospects of the development of technologies of transporting the natural gas by sea due to the fact that gas hydrate deposits are found on the bottom of Lake Baikal, the Black Sea, the Caspian Sea and the Okhotsk Sea. It has been stated that despite the proved gas hydrate deposits the fields have not been explored yet. Introducing the technology for transporting gas by sea in gas hydrate form is being substantiated. Comparative analysis of LNG, CNG and NGH technologies for sea transportation of natural gas proved that the transport component of the NGH technological chain has significant advantages over LNG and CNG technologies. The process of converting thermal energy of the ocean has been proposed to use for increasing the energy efficiency of methane production from subsea gas hydrate deposits in the gas hydrate cycle, which can save 10-15% of the produced methane for electricity generation. A schematic and technological solution of a gas production complex is presented, according to which carbon dioxide is introduced into the gas hydrate layer to extract methane from gas hydrates. To improve the kinetics of replacing methane with carbon dioxide in gas hydrates it is proposed to recycle a portion of CO2. Due to the specific and diversified geographic, economic, political and other conditions the conventional technologies for pipeline transportation of gas and LNG cannot fully meet the requirements of gas export and production projects. It has been inferred that NGH technology is most suitable for solving the problem of diversifying natural gas supplies from the Arctic regions, the Black Sea and in the development of offshore gas and oil fields.


2019 ◽  
Vol 28 (3) ◽  
pp. 395-408
Author(s):  
V. Bondarenko ◽  
K. Sai ◽  
M. Petlovanyi

The actuality has been revealed of the necessity to attract the gas hydrate depos- its of the Black Sea into industrial development as an alternative to traditional gas fields. This should be preceded by the identification and synthesis of geological and thermobaric peculiarities of their existence. It was noted that the gas hydrates formation occurs under certain thermobaric conditions, with the availability of a gas hydrate-forming agent, which is capable of hydrate formation, as well as a sufficient amount of water necessary to start the crystallization process. The gas hydrate accumulation typically does not occur in free space – in sea water, but in the massif of the sea bed rocks. The important role in the process of natural gas hydrates formation is assigned to thermobaric parameters, as well as to the properties and features of the geological environment, in which, actually, the process of hydrate formation and further hydrate accumulation occurs. It was noted that the source of formation and accumulation of the Black Sea gas hydrates is mainly catagenetic (deep) gas, but diagenetic gas also takes part in the process of gas hydrate deposits formation. The main component of natural gas hydrate deposits is methane and its homologs – ethane, propane, isobutane. The analysis has been made of geological and geophysical data and literature materials devoted to the study of the offshore area and the bottom of the Black Sea, as well as to the identification of gas hydrate deposits. It was established that in the offshore area the gas hydrate deposits with a heterogeneous structure dominate, that is, which comprises a certain proportion of aluminosilicate inclusions. It was noted that theBlack Sea bottom sediments, beginning with the depths of 500 – 600 m, are gassy with methane, and a large sea part is favourable for hydrate formation at temperatures of +8...+9oC and pressures from 7 to 20 MPa at different depths. The characteristics of gas hydrate deposits are provided, as well as requirements and aspects with regard to their industrialization and development. It is recommended to use the method of thermal influence on gas hydrate deposits, since, from an ecological point of view, it is the safest method which does not require additional water resources for its implementation, because water intake is carried out directly from the upper sea layers. A new classification of gas hydrate deposits with a heterogeneous structure has been developed, which is based on the content of rocks inclusions in gas hydrate, the classification feature of which is the amount of heat spent on the dissociation process.


2016 ◽  
Author(s):  
Oluwatoyin Akinsete ◽  
Sunday Isehunwa

ABSTRACT Natural gas, one of the major sources of energy for the 21st century, provides more than one-fifth of the worldwide energy needs. Storing this energy in gas hydrate form presents an alternative to its storage and smart solution to its flow with the rest of the fluid without creating a difficulty in gas pipeline systems due to pressure build-up. This study was design to achieve this situation in a controlled manner using a simple mathematical model, by applying mass and momentum conservation principles in canonical form to non-isothermal multiphase flow, for predicting the onset conditions of hydrate formation and storage capacity growth of the gas hydrate in pipeline systems. Results from this developed model shows that the increase in hydrate growth, the more the hydrate storage capacity of gas within and along the gas pipeline. The developed model is therefore recommended for management of hydrate formation for natural gas storage and transportation in gas pipeline systems.


2020 ◽  
Vol 844 ◽  
pp. 49-64
Author(s):  
Anatolii Kozhevnykov ◽  
Volodymyr Khomenko ◽  
Bao Chang Liu ◽  
Oleksandr Kamyshatskyi ◽  
Oleksandr Pashchenko

This paper is devoted to the history of exploration of sintezed and natural gas hydrate. Academic, engineering and energy periods of the history of gas hydrates studies are described. The most significant researches in this area are described. The main practical projects in the world for the study and production of gas hydrates are reviewed.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. B247-B258 ◽  
Author(s):  
Bo Yang ◽  
Xiangyun Hu ◽  
Wule Lin ◽  
Shuang Liu ◽  
Hui Fang

In China, gas hydrates in onshore permafrost areas have so far only been found in the Juhugeng Mine of the Qilian Mountains. However, their subsurface distribution remains unclear. Electrical resistivity logs have revealed that zones containing gas hydrates have higher resistivity than surrounding zones, which makes electromagnetic methods viable for detecting gas-hydrate deposits. We have deployed a natural-source audio-magnetotelluric (AMT) survey at the Juhugeng Mine. AMT data were collected at 176 sites along five profiles, and resistivity models were derived from 2D inversions after detailed data analysis. After the available geologic and geophysical observations were combined, the inversion results from profile 1 suggested that permafrost near the surface with high resistivity and thickness is essential for underlying gas hydrates to be present. The decrease in resistivity and/or thickness of permafrost due to climate change may lead to gas-hydrate dissociation. The other four AMT transects suggested three prospective gas-hydrate sites. Our results indicate that the AMT survey technique is suitable for exploring gas hydrates in permafrost areas and analyzing the impact of permafrost characteristics on gas-hydrate occurrence.


Sign in / Sign up

Export Citation Format

Share Document