scholarly journals Numerical simulation for fracture network evolution in coal-bearing gas reservoir reconstruction based on damage theory

2021 ◽  
Vol 25 (6 Part B) ◽  
pp. 4423-4429
Author(s):  
Hai-Xiao Lin ◽  
Qiu-Yu Pan ◽  
Bang-Hua Yao ◽  
Wen-Long Shen ◽  
Feng Yang

Based on the characteristics of mechanical response of coal rock under loading, an elastic-brittle damage constitutive relation of coal rock has been proposed, which has been extended to the 3-D stress state, based on the geological strength index. Besides, a numerical calculation method based on the elastic-brittle damage the?ory has been developed, by analyzing the seepage-stress coupling effect. Then, a computing program for fracture network transformation has been composed to perform numerical simulation of forming process of coal rock under different working conditions, by the APDL language in the ANSYS software platform. The mechanical mechanism of fracture network forming process of coal rock has been further analyzed.

2008 ◽  
Vol 33-37 ◽  
pp. 1377-1382 ◽  
Author(s):  
Halida Musha ◽  
Mamtimin Gheni ◽  
Buhalqam

In this paper, the iBone (Imitation Bone) model which is coupled with Turing reaction-diffusion system and FEM, is used. The numerical simulation of bone forming process by considering the osteoclasts and osteoblasts process are conducted. The bone mass is increased with increase of the initial load value, then fibula and femur bones are obtained respectively by keeping the required bone forming value. The new S shape wave of metal welded bellow of mechanical seal are designed based on the the optimization results through this method. The S shape and V shape both were analyzed with FEM method. The same boundary conditions were given for two types of wave. The results are shown that the stresses mainly concentrated on the welded area. It is interesting that the value of the stresses of the two types of wave basically same. However, compressibility of the two types of wave is very different at the same computation stage. The compressibility of S shape wave was higher than V shape.


Author(s):  
Hairui Wang ◽  
Chunfang Guo ◽  
Yujie Li ◽  
Yahua Liu ◽  
Minjie Wang ◽  
...  

With the advantage of high adaptability, Miura-origami structure with curvature shows various engineering applications such as a sandwich between two stiff facings with curvature requirements and structural support to form a circular tube. In this research, a forming method of polymer circular tube with single-curved surface origami expressed by five parameters was established and its corresponding theory was solved considering forming rationality in actual manufacturing. The components of circular tube were fabricated by the vacuum forming process and then spliced together. We conducted numerical simulation to analyze the structural performance of the tube with five parameters and shown that these parameters have a great influence on energy absorbed performance. Finally, a male mold of a part with Arc Miura-origami structure was designed and fabricated. The parts with Arc Miura-origami were manufactured using vacuum forming process and then spliced and bonded together into a two-layer tube. This research may provide a method to design and fabricate Miura-origami structure with high efficiency and quality.


2015 ◽  
Vol 818 ◽  
pp. 252-255 ◽  
Author(s):  
Ján Slota ◽  
Marek Šiser

The paper deals with optimization of forming process for AISI 430 stainless steel with nominal thickness 0.4 mm. During forming of sidewall for washing machine drum, some wrinkles remain at the end of forming process in some places. This problem was solved by optimization the geometry of the drawpiece using numerical simulation. During optimization a series of modifications of the part geometry to absolute elimination of wrinkling was performed. On the basis of mechanical tests, the material model was created and imported into the material database of Autoform simulation software.


2013 ◽  
Vol 554-557 ◽  
pp. 1375-1381 ◽  
Author(s):  
Laurence Giraud-Moreau ◽  
Abel Cherouat ◽  
Jie Zhang ◽  
Houman Borouchaki

Recently, new sheet metal forming technique, incremental forming has been introduced. It is based on using a single spherical tool, which is moved along CNC controlled tool path. During the incremental forming process, the sheet blank is fixed in sheet holder. The tool follows a certain tool path and progressively deforms the sheet. Nowadays, numerical simulations of metal forming are widely used by industry to predict the geometry of the part, stresses and strain during the forming process. Because incremental forming is a dieless process, it is perfectly suited for prototyping and small volume production [1, 2]. On the other hand, this process is very slow and therefore it can only be used when a slow series production is required. As the sheet incremental forming process is an emerging process which has a high industrial interest, scientific efforts are required in order to optimize the process and to increase the knowledge of this process through experimental studies and the development of accurate simulation models. In this paper, a comparison between numerical simulation and experimental results is realized in order to assess the suitability of the numerical model. The experimental investigation is realized using a three-axis CNC milling machine. The forming tool consists in a cylindrical rotating punch with a hemispherical head. A subroutine has been developed to describe the tool path from CAM procedure. A numerical model has been developed to simulate the sheet incremental forming process. The finite element code Abaqus explicit has been used. The simulation of the incremental forming process stays a complex task and the computation time is often prohibitive for many reasons. During this simulation, the blank is deformed by a sequence of small increments that requires many numerical increments to be performed. Moreover, the size of the tool diameter is generally very small compared to the size of the metal sheet and thus the contact zone between the tool and the sheet is limited. As the tool deforms almost every part of the sheet, small elements are required everywhere in the sheet resulting in a very high computation time. In this paper, an adaptive remeshing method has been used to simulate the incremental forming process. This strategy, based on adaptive refinement and coarsening procedures avoids having an initially fine mesh, resulting in an enormous computing time. Experiments have been carried out using aluminum alloy sheets. The final geometrical shape and the thickness profile have been measured and compared with the numerical results. These measurements have allowed validating the proposed numerical model. References [1] M. Yamashita, M. Grotoh, S.-Y. Atsumi, Numerical simulation of incremental forming of sheet metal, J. Processing Technology, No. 199 (2008), p. 163 172. [2] C. Henrard, A.M. Hbraken, A. Szekeres, J.R. Duflou, S. He, P. Van Houtte, Comparison of FEM Simulations for the Incremental Forming Process, Advanced Materials Research, 6-8 (2005), p. 533-542.


2010 ◽  
Vol 37-38 ◽  
pp. 1416-1420 ◽  
Author(s):  
Ran Zhao ◽  
Kang Sheng Zhang ◽  
Zheng Huan Hu

Deep study on Inside Right-angle Step (IRS) forming process was conducted to improve the precision of its (IRS) forming. According to its actual forming process, the zone, or the undeformed zone, was looked as semi-spiral declined cone and excluded the contact zone. A new algorithm was developed for calculating the size of the undeformed zone. More simple mathematical models and expressions weredeveloped for solving the shaping curve. The model was verified in terms of its simplicity and correctness based on the numerical simulation.


2017 ◽  
Vol 107 (10) ◽  
pp. 708-713
Author(s):  
M. Prof. Liewald ◽  
L. Pasler

Mit dem neu entwickelten Verfahren, das Querfließpressen mit gleichzeitigem Verschieben kombiniert, lassen sich exzentrische Wellen oder kurbelwellenartige Bauteile durch Kaltfließpressen herstellen. Der Vorteil im Unterschied zur Verfahrenskombination von Stauchen und anschließendem Verschieben ist, dass das Querfließpressen ein Nachführen von Material während des Umformprozesses in die Umformzone ermöglicht. Aufgrund der verfahrensbedingten geringeren Zugspannungen in der Kurbelwange sind mit dem neuen Verfahren erweiterte Verfahrensgrenzen beim Versatz zu erwarten. Dieser Fachbeitrag beschreibt das Verfahrensprinzip, das Werkzeugkonzept und die numerische Auslegung des Prozesses.   The new technology of combined lateral extrusion and simultaneous shifting allows producing eccentric shafts or crankshaft-like components by cold forging. The advantage of lateral extrusion compared to an upsetting and subsequent shifting is the constant web thickness. For this, material is pushed into the forming zone during the forming process. It is expected that this will result in lower tensile stresses and thus lower damage in the crankshaft web. This paper describes the process, tooling concept and numerical simulation of the combined lateral extrusion and shifting process.


2015 ◽  
Author(s):  
Pei-Yong Li ◽  
◽  
Jun-jie Song ◽  
Cheng-fang Wang ◽  
Yun-sheng Mao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document