scholarly journals Optimisation of production machine scheduling using a two level mixed optimisation method

2010 ◽  
Vol 20 (2) ◽  
pp. 197-212
Author(s):  
Rana Anil ◽  
Ajit Verma ◽  
A.S. Srividya

This paper presents an application of a two level mixed optimization method on a machine scheduling problem of a government owned machine shop. Where evolutionary algorithm methods are suitable for solving complex, discrete space, and non-linear, discontinuous optimization problems; classical direct-search optimization methods are suitable and efficient in handling simple unimodal problems requiring less computation. Both methods are used at two levels, the first level decides which machines to be used for the machining operations and how much overtime (at extra cost) to be allotted to each work order, the second level decides for which operation and on which day the overtime should be allotted so as to attain its maximum benefit. A sample problem has been solved by using the above methods and a range of non-dominated solutions have been presented in a tabular form to enable the production manager to choose his options based on the given criticality of the work order.

Author(s):  
A. Andrade-Campos

The use of optimization methods in engineering is increasing. Process and product optimization, inverse problems, shape optimization, and topology optimization are frequent problems both in industry and science communities. In this paper, an optimization framework for engineering inverse problems such as the parameter identification and the shape optimization problems is presented. It inherits the large experience gain in such problems by the SiDoLo code and adds the latest developments in direct search optimization algorithms. User subroutines in Sdl allow the program to be customized for particular applications. Several applications in parameter identification and shape optimization topics using Sdl Lab are presented. The use of commercial and non-commercial (in-house) Finite Element Method codes to evaluate the objective function can be achieved using the interfaces pre-developed in Sdl Lab. The shape optimization problem of the determination of the initial geometry of a blank on a deep drawing square cup problem is analysed and discussed. The main goal of this problem is to determine the optimum shape of the initial blank in order to save latter trimming operations and costs.


Author(s):  
Xike Zhao ◽  
Hae Chang Gea ◽  
Wei Song

In this paper the Eigenvalue-Superposition of Convex Models (ESCM) based topology optimization method for solving topology optimization problems under external load uncertainties is presented. The load uncertainties are formulated using the non-probabilistic based unknown-but-bounded convex model. The sensitivities are derived and the problem is solved using gradient based algorithm. The proposed ESCM based method yields the material distribution which would optimize the worst structure response under the uncertain loads. Comparing to the deterministic based topology optimization formulation the ESCM based method provided more reasonable solutions when load uncertainties were involved. The simplicity, efficiency and versatility of the proposed ESCM based topology optimization method can be considered as a supplement to the sophisticated reliability based topology optimization methods.


2009 ◽  
Vol 25 (2) ◽  
pp. 143-150 ◽  
Author(s):  
N. Wang ◽  
C.-M. Tsai ◽  
K.-C. Cha

AbstractThis study examines the parallel computing as a means to minimize the execution time in the optimization applied to thermohydrodynamic (THD) lubrication. The objective of the optimization is to maximize the load capacity of a slider bearing with two design variables. A global optimization method, DIviding RECTangle (DIRECT) algorithm, is used. The first approach was to apply the parallel computing within the THD model in a shared-memory processing (SMP) environment to examine the parallel efficiency of fine-grain computation. Next, a distributed parallel computing in the search level was conducted by use of the standard DIRECT algorithm. Then, the algorithm is modified to provide a version suitable for effective parallel computing. In the latter coarse-grain computation the speedups obtained by the DIRECT algorithms are compared with some previous studies using other parallel optimization methods. In the fine-grain computation of the SMP machine, the communication and overhead time costs prohibit high speedup in the cases of four or more simultaneous threads. It is found that the standard DIRECT algorithm is an efficient sequential but less parallel-computing-friendly method. When the modified algorithm is used in the slider bearing optimization, a parallel efficiency of 96.3% is obtained in the 16-computing-node cluster. This study presents the modified DIRECT algorithm, an efficient parallel search method, for general engineering optimization problems.


2003 ◽  
Vol 125 (3) ◽  
pp. 343-351 ◽  
Author(s):  
L. G. Caldas ◽  
L. K. Norford

Many design problems related to buildings involve minimizing capital and operating costs while providing acceptable service. Genetic algorithms (GAs) are an optimization method that has been applied to these problems. GAs are easily configured, an advantage that often compensates for a sacrifice in performance relative to optimization methods selected specifically for a given problem, and have been shown to give solutions where other methods cannot. This paper reviews the basics of GAs, emphasizing multi-objective optimization problems. It then presents several applications, including determining the size and placement of windows and the composition of building walls, the generation of building form, and the design and operation of HVAC systems. Future work is identified, notably interfaces between a GA and both simulation and CAD programs.


2021 ◽  
Vol 4 (2) ◽  
pp. 241-256
Author(s):  
Ganga Negi ◽  
◽  
Anuj Kumar ◽  
Sangeeta Pant ◽  
Mangey Ram ◽  
...  

Reliability allocation to increase the total reliability has become a successful way to increase the efficiency of the complex industrial system designs. A lot of research in the past have tackled this problem to a great extent. This is evident from the different techniques developed so far to achieve the target. Stochastic metaheuristics like simulated annealing, Tabu search (TS), Particle Swarm Optimization (PSO), Cuckoo Search Optimization (CS), Genetic Algorithm (GA), Grey wolf optimization technique (GWO) etc. have been used in recent years. This paper proposes a framework for implementing a hybrid PSO-GWO algorithm for solving some reliability allocation and optimization problems. A comparison of the results obtained is done with the results of other well-known methods like PSO, GWO, etc. The supremacy/competitiveness of the proposed framework is demonstrated from the numerical experiments. These results with regard to the time taken for the computation and quality of solution outperform the previously obtained results by the other well-known optimization methods.


Author(s):  
Liqun Wang ◽  
Songqing Shan ◽  
G. Gary Wang

The presence of black-box functions in engineering design, which are usually computation-intensive, demands efficient global optimization methods. This work proposes a new global optimization method for black-box functions. The global optimization method is based on a novel mode-pursuing sampling (MPS) method which systematically generates more sample points in the neighborhood of the function mode while statistically covers the entire search space. Quadratic regression is performed to detect the region containing the global optimum. The sampling and detection process iterates until the global optimum is obtained. Through intensive testing, this method is found to be effective, efficient, robust, and applicable to both continuous and discontinuous functions. It supports simultaneous computation and applies to both unconstrained and constrained optimization problems. Because it does not call any existing global optimization tool, it can be used as a standalone global optimization method for inexpensive problems as well. Limitation of the method is also identified and discussed.


Author(s):  
A. Andrade-Campos

The use of optimization methods in engineering is increasing. Process and product optimization, inverse problems, shape optimization, and topology optimization are frequent problems both in industry and science communities. In this paper, an optimization framework for engineering inverse problems such as the parameter identification and the shape optimization problems is presented. It inherits the large experience gain in such problems by the SiDoLo code and adds the latest developments in direct search optimization algorithms. User subroutines in Sdl allow the program to be customized for particular applications. Several applications in parameter identification and shape optimization topics using Sdl Lab are presented. The use of commercial and non-commercial (in-house) Finite Element Method codes to evaluate the objective function can be achieved using the interfaces pre-developed in Sdl Lab. The shape optimization problem of the determination of the initial geometry of a blank on a deep drawing square cup problem is analysed and discussed. The main goal of this problem is to determine the optimum shape of the initial blank in order to save latter trimming operations and costs.


2013 ◽  
Vol 694-697 ◽  
pp. 728-733
Author(s):  
Xin Liu ◽  
Xiao Hong Hao ◽  
Xin Hua Yang ◽  
Ai Min An ◽  
Hao Chen Zhang

The working environment of Solid Oxide Fuel Cells (SOFC) includes high temperature and speedy chemical reaction. The improved control structure and optimization method for the simplified temperature system of SOFC are proposed in this paper. It designs a real-time cascade PID controller for dynamic reactive temperatures of SOFC which vary significantly as the external disturbance or operating mode changes. Considering the efficiency of fuel utility and output power are incommensurable multiple goals, some fuzzy-based rules are introduced to solve these complex multi-objective optimization problems. The experiments’ result shows that the controllers have good robustness and quickness when the system is under the mode with external disturbances.


Author(s):  
Nataliya Gulayeva ◽  
Volodymyr Shylo ◽  
Mykola Glybovets

Introduction. As early as 1744, the great Leonhard Euler noted that nothing at all took place in the universe in which some rule of maximum or minimum did not appear [12]. Great many today’s scientific and engineering problems faced by humankind are of optimization nature. There exist many different methods developed to solve optimization problems, the number of these methods is estimated to be in the hundreds and continues to grow. A number of approaches to classify optimization methods based on various criteria (e.g. the type of optimization strategy or the type of solution obtained) are proposed, narrower classifications of methods solving specific types of optimization problems (e.g. combinatorial optimization problems or nonlinear programming problems) are also in use. Total number of known optimization method classes amounts to several hundreds. At the same time, methods falling into classes far from each other may often have many common properties and can be reduced to each other by rethinking certain characteristics. In view of the above, the pressing task of the modern science is to develop a general approach to classify optimization methods based on the disclosure of the involved search strategy basic principles, and to systematize existing optimization methods. The purpose is to show that genetic algorithms, usually classified as metaheuristic, population-based, simulation, etc., are inherently the stochastic numerical methods of direct search. Results. Alternative statements of optimization problem are given. An overview of existing classifications of optimization problems and basic methods to solve them is provided. The heart of optimization method classification into symbolic (analytical) and numerical ones is described. It is shown that a genetic algorithm scheme can be represented as a scheme of numerical method of direct search. A method to reduce a given optimization problem to a problem solvable by a genetic algorithm is described, and the class of problems that can be solved by genetic algorithms is outlined. Conclusions. Taking into account the existence of a great number of methods solving optimization problems and approaches to classify them it is necessary to work out a unified approach for optimization method classification and systematization. Reducing the class of genetic algorithms to numerical methods of direct search is the first step in this direction. Keywords: mathematical programming problem, unconstrained optimization problem, constrained optimization problem, multimodal optimization problem, numerical methods, genetic algorithms, metaheuristic algorithms.


2019 ◽  
Vol 22 (2) ◽  
pp. 96-108
Author(s):  
A. V. Panteleev ◽  
M.M. S. Karane

The article considers the use of three multi-agent methods for optimizing structural elements of aircraft. The research describes strategies for finding solutions to multi-agent metaheuristic algorithms, such as: fish school search, krill herd, and imperialist competition algorithm. The work of these methods is based on the processes occurring in an environment that features many agents. Agents have the opportunity to exchange information in order to find a solution to the problem. These methods allow you to find an approximate solution, but, nevertheless, with great success are used in practice. In this regard, the described metaheuristic algorithms were applied to the optimization problems of structural elements of aircraft such as: welded beam, high pressure vessel, gearbox and tension spring. The article adduces the formulation of these problems: the objective function, a set of constraints and a set of admissible solutions are indicated, recommendations on the choice of parameters of the methods used are given. To solve the problems of optimizing the elements of aircraft construction, a set of software elements was formed in the development environment of Microsoft Visual Studio in C #. This complex of programs allows you to solve the given problems by each of the described multi-agent methods. The software allows you to select a method, a task and select the method parameters and the penalty function coefficients in the best possible way. The results of the solution were compared with each other and with the well- known solution. According to the numerical results of solving these tasks, we can conclude that the algorithmic and software created allow us to find a solution close to the exact one in a reasonable time.


Sign in / Sign up

Export Citation Format

Share Document