Varanus salvator: Bennett, D., Gaulke, M., Pianka, E.R., Somaweera, R. & Sweet, S.S.

Author(s):  
Keyword(s):  
2019 ◽  
Author(s):  
Mahfud Mahfud ◽  
Ernawati

Biological information, behaviour and suitable habitat of water monitor was very less in order to support its maintenance management and breeding efforts. One of important information is the information of digestive tract, particularly the information about the structure of intestine tissue of water monitor. Sample in this research was intestine organ of water monitor. The animal was anesthetized, exanguinated, and fixed in paraformaldehyde 4% by tissue perfusion method. The intestine tissue sample for histological section with paraffin method was cutted with 3-4 μm thick and coloured with hematoxylin eosin (HE). Observation were performed to the structure of intestine histology. The results was analysed descriptively and presented in figures. Monitor lizard intestine consist of small intestine and large intestine. The small intestinal wall was observed similar to jejunum and ileum. The large intestinal wall was composed of transitional ephytelia and connective tissue. However, the ephytelial layer in this tissue was composed of transitional ephytelia that similar to vesica urinaria and there are no villi.


2019 ◽  
Author(s):  
Mahfud Mahfud ◽  
Ihwan

Excessive hunting and poaching for commercial purpose of Varanus salvator in Indonesia can cause a decline in this animal population. However, the scientific information of this animal especially about the biologic of organ system is rarely reported. Therefore, this case opens up opportunities for researching, which aims to study the anatomy of digestive tract of water monitor macroscopically. This research has been conducted in Biology Laboratory, University of Muhammadiyah Kupang for 5 months from March to August 2016. The digestive organ of this animal that has been preserved in alcohol 70% was obtained before from two males of water monitors. Preservation process: the animal were anesthetized, exsanguinated, and fixated in 4 paraformaldehyde by tissue perfusion method. Observations were performed to the visceral site and morphometrical of digestive tract. The resulted data was analysed descriptively and presented in tables and figures. The digestive tract of water monitor consist of esophagus, stomach, small intestine, large intestine and cloaca. The dimension of each organ is different based on its structures and functions. The esophagus of water monitor connects the mouth cavity and the stomach and also as the entrance of food to the stomach. Water monitor stomach were found in cranial part of abdomen, in left side of liver. The small intestine was longer than stomach and it is a winding muscular tube in abdomen in posterior side of liver. The large intestine consist of colon and cloaca, while cecum was not found. This channel was extend lateromedially in abdomen to cloaca between left and right kidneys. The cloaca was the end of digestive tract which excreted feces and urine. From this research, we can conclude that the digestive tract of water monitor consists of esophagus, stomach, small intestine, and large intestine. It’s difficult to differentiate small intestine and large intestine because there are no cecum.


2020 ◽  
Vol 20 (13) ◽  
pp. 1558-1570
Author(s):  
Shareni Jeyamogan ◽  
Naveed A. Khan ◽  
Kuppusamy Sagathevan ◽  
Ruqaiyyah Siddiqui

Background: Cancer contributes to significant morbidity and mortality despite advances in treatment and supportive care. There is a need for the identification of effective anticancer agents. Reptiles such as tortoise, python, and water monitor lizards are exposed to heavy metals, tolerate high levels of radiation, feed on rotten/germ-infested feed, thrive in unsanitary habitat and yet have prolonged lifespans. Such species are rarely reported to develop cancer, suggesting the presence of anticancer molecules/mechanisms. Methods: Here, we tested effects from sera of Asian water monitor lizard (Varanus salvator), python (Malayopython reticulatus) and tortoise (Cuora kamaroma amboinensis) against cancer cells. Sera were collected and cytotoxicity assays were performed using prostate cancer cells (PC3), Henrietta Lacks cervical adenocarcinoma cells (HeLa) and human breast adenocarcinoma cells (MCF7), as well as human keratinized skin cells (Hacat), by measuring lactate dehydrogenase release as an indicator for cell death. Growth inhibition assays were performed to determine the effects on cancer cell proliferation. Liquid chromatography mass spectrometry was performed for molecular identification. Results: The findings revealed that reptilian sera, but not bovine serum, abolished viability of Hela, PC3 and MCF7 cells. Samples were subjected to liquid chromatography mass spectrometry, which detected 57 molecules from V. salvator, 81 molecules from Malayopython reticulatus and 33 molecules from C. kamaroma amboinensis and putatively identified 9 molecules from V. salvator, 20 molecules from Malayopython reticulatus and 9 molecules from C. kamaroma amboinensis when matched against METLIN database. Based on peptide amino acid composition, binary profile, dipeptide composition and pseudo-amino acid composition, 123 potential Anticancer Peptides (ACPs) were identified from 883 peptides from V. salvator, 306 potential ACPs from 1074 peptides from Malayopython reticulatus and 235 potential ACPs from 885 peptides from C. kamaroma amboinensis. Conclusion: To our knowledge, for the first time, we reported comprehensive analyses of selected reptiles’ sera using liquid chromatography mass spectrometry, leading to the identification of potentially novel anticancer agents. We hope that the discovery of molecules from these animals will pave the way for the rational development of new anticancer agents.


Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 148
Author(s):  
Watcharaporn Thapana ◽  
Nattakan Ariyaraphong ◽  
Parinya Wongtienchai ◽  
Nararat Laopichienpong ◽  
Worapong Singchat ◽  
...  

Duplicate control regions (CRs) have been observed in the mitochondrial genomes (mitogenomes) of most varanids. Duplicate CRs have evolved in either concerted or independent evolution in vertebrates, but whether an evolutionary pattern exists in varanids remains unknown. Therefore, we conducted this study to analyze the evolutionary patterns and phylogenetic utilities of duplicate CRs in 72 individuals of Varanus salvator macromaculatus and other varanids. Sequence analyses and phylogenetic relationships revealed that divergence between orthologous copies from different individuals was lower than in paralogous copies from the same individual, suggesting an independent evolution of the two CRs. Distinct trees and recombination testing derived from CR1 and CR2 suggested that recombination events occurred between CRs during the evolutionary process. A comparison of substitution saturation showed the potential of CR2 as a phylogenetic marker. By contrast, duplicate CRs of the four examined varanids had similar sequences within species, suggesting typical characteristics of concerted evolution. The results provide a better understanding of the molecular evolutionary processes related to the mitogenomes of the varanid lineage.


Author(s):  
Supriyono ◽  
Ai Takano ◽  
Ryusei Kuwata ◽  
Hiroshi Shimoda ◽  
Upik K. Hadi ◽  
...  
Keyword(s):  

Copeia ◽  
1988 ◽  
Vol 1988 (4) ◽  
pp. 1029
Author(s):  
Bruce A. Young
Keyword(s):  

Author(s):  
Morhanavallee Soopramanien ◽  
Naveed Ahmed Khan ◽  
Kuppusamy Sagathevan ◽  
Ruqaiyyah Siddiqui

Sign in / Sign up

Export Citation Format

Share Document