The Use of Radio-Telemetry to Evaluate Microhabitat Selection by Deer Mice

1989 ◽  
Vol 70 (3) ◽  
pp. 648-652 ◽  
Author(s):  
R. J. Douglass
2007 ◽  
Vol 37 (6) ◽  
pp. 1082-1092 ◽  
Author(s):  
Robert Serrouya ◽  
Bruce N. McLellan ◽  
John P. Flaa

Mountain caribou, an endangered ecotype of woodland caribou ( Rangifer tarandus caribou Gmelin, 1788), live in late-successional coniferous forests where they depend largely on arboreal lichens as winter forage. While radio-telemetry has been used to understand caribou habitat selection patterns at broad scales among and within populations, here we use snow-trailing in old cedar–hemlock forests between 1992 and 2003 to study three finer scales of habitat selection: (1) forest stands used for foraging from available forest stands (among-stand selection), (2) foraging paths within selected stands relative to random paths within those same stands (within-stand selection), and (3) feeding items along foraging paths. Relative to stands that were available on the landscape, caribou selected stands with more windthrown trees and standing snags. Within stands, caribou selected paths that had more live trees, snags with branches and bark, and trees with larger diameters. All of these habitat attributes facilitate access to arboreal lichen. Of the potential forage items encountered along foraging paths, caribou preferred to feed on windthrown trees, lichen litterfall and falsebox ( Paxistima myrsinites (Pursh.) Raf.). Our results go beyond telemetry studies by revealing that not all old forests are of equal value to mountain caribou. Prioritization among old stands will help refine conservation measures, as will silvicultural systems that incorporate key habitat attributes to maintain winter habitat in low-elevation cedar–hemlock ecosystems.


1994 ◽  
Vol 42 (1) ◽  
pp. 125 ◽  
Author(s):  
WP Porter ◽  
JC Munger ◽  
WE Stewart ◽  
S Budaraju ◽  
J Jaeger

We outline a computer model of heat and mass transfer through flesh, fat and porous fur for endotherms of any dimensions. We then validate it with a series of laboratory studies. Finally, we explore applications of the model to Bergmann's rule, predicting the mouse-to-elephant curve, climate-disease-toxicant interactions, animal 'design' via genetic engineering and energetic constraints on community structure. As a first test of the model we present calculations and metabolic chamber measurements for mammals ranging in size from mice to Holstein calves. We then compare simultaneous measurements on deer mice, Peromyscus maniculatus, of oxygen consumption, doubly labelled water turnover and food consumption with calculations of metabolic rate using body temperature radio-telemetry as input to the endotherm model. The endotherm model derived in the Appendix requires data on allometry (body dimensions, surface area), fur properties, core temperature, air and radiant temperatures and wind speed. The model is useful for calculating energetic expenditure in different microclimates without the need for extensive physiological measurements in the laboratory. Model predictions of metabolic rate at 12-degrees-C and at 22-degrees-C were well correlated with each of the three empirical estimates. The model shows that the posture an animal assumes can influence measurements of metabolic rate. Model calculations of metabolic rate using postures ranging from a curled-up ball-like geometry to a sprawled-out, cylinder or ellipsoid geometry bracket all three sets of simultaneous empirical data taken on the same animals. Applications of the model show that it can be applied in a wide variety of circumstances to gain insight into physiological and ecological problems.


Author(s):  
J. T. Ellzey ◽  
D. Borunda ◽  
B. P. Stewart

Genetically alcohol deficient deer mice (ADHN/ADHN) (obtained from the Peromyscus Genetic Stock Center, Univ. of South Carolina) lack hepatic cytosolic alcohol dehydrogenase. In order to determine if these deer mice would provide a model system for an ultrastructural study of the effects of ethanol on hepatocyte organelles, 75 micrographs of ADH+ adult male deer mice (n=5) were compared with 75 micrographs of ADH− adult male deer mice (n=5). A morphometric analysis of mitochondrial and peroxisomal parameters was undertaken.The livers were perfused with 0.1M HEPES buffer followed by 0.25% glutaraldehyde and 2% sucrose in 0.1M HEPES buffer (4C), removed, weighed and fixed by immersion in 2.5% glutaraldehyde in 0.1M HEPES buffer, pH 7.4, followed by a 3,3’ diaminobenzidine (DAB) incubation, postfixation with 2% OsO4, en bloc staining with 1% uranyl acetate in 0.025M maleate-NaOH buffer, dehydrated, embedded in Poly/Bed 812-BDMA epon resin, sectioned and poststained with uranyl acetate and lead citrate. Photographs were taken on a Zeiss EM-10 transmission electron microscope, scanned with a Howtek personal color scanner, analyzed with OPTIMAS 4.02 software on a Gateway2000 4DX2-66V personal computer and stored in Excel 4.0.


Author(s):  
C. D. Humphrey ◽  
C.S. Goldsmith ◽  
L. Elliott ◽  
S.R. Zaki

An outbreak of unexplained acute pulmonary syndrome with high fatality was recognized in the spring of 1993 in the southwestern United States. The cause of the illness was quickly identified serologically and genetically as a hantavirus and the disease was named hantavirus pulmonary syndrome (HPS). Recently, the virus was isolated from deer mice which had been trapped near the homes of HPS patients, and cultivated in Vero E6 cells. We identified the cultivated virus by negative-stain direct and colloidal gold immune electron microscopy (EM).Virus was extracted, clarified, and concentrated from unfixed and 0.25% glutaraldehyde fixed supernatant fluids of infected Vero E6 cells by a procedure described previously. Concentrated virus suspensions tested by direct EM were applied to glow-discharge treated formvar-carbon filmed grids, blotted, and stained with 0.5% uranyl acetate (UA) or with 2% phosphotungstic acid (PTA) pH 6.5. Virus suspensions for immune colloidal gold identification were adsorbed similarly to filmed grids but incubated for 1 hr on drops of 1:50 diluted monoclonal antibody to Prospect Hill virus nucleoprotein or with 1:50 diluted sera from HPS virus infected deer mice.


1989 ◽  
Vol 264 (10) ◽  
pp. 5593-5597
Author(s):  
C Norsten ◽  
T Cronholm ◽  
G Ekström ◽  
J A Handler ◽  
R G Thurman ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bryan D. Griffin ◽  
Mable Chan ◽  
Nikesh Tailor ◽  
Emelissa J. Mendoza ◽  
Anders Leung ◽  
...  

AbstractWidespread circulation of SARS-CoV-2 in humans raises the theoretical risk of reverse zoonosis events with wildlife, reintroductions of SARS-CoV-2 into permissive nondomesticated animals. Here we report that North American deer mice (Peromyscus maniculatus) are susceptible to SARS-CoV-2 infection following intranasal exposure to a human isolate, resulting in viral replication in the upper and lower respiratory tract with little or no signs of disease. Further, shed infectious virus is detectable in nasal washes, oropharyngeal and rectal swabs, and viral RNA is detectable in feces and occasionally urine. We further show that deer mice are capable of transmitting SARS-CoV-2 to naïve deer mice through direct contact. The extent to which these observations may translate to wild deer mouse populations remains unclear, and the risk of reverse zoonosis and/or the potential for the establishment of Peromyscus rodents as a North American reservoir for SARS-CoV-2 remains unknown.


Sign in / Sign up

Export Citation Format

Share Document