scholarly journals Atmospheric Water Absorption and the Water Budget of Terrestrial Isopods (Crustacea, Isopoda, Oniscidea)

1993 ◽  
Vol 184 (2) ◽  
pp. 243-253 ◽  
Author(s):  
J. C. Wright ◽  
J. Machin
2019 ◽  
Vol 32 (7) ◽  
pp. 2109-2129 ◽  
Author(s):  
Declan L. Finney ◽  
John H. Marsham ◽  
Lawrence S. Jackson ◽  
Elizabeth J. Kendon ◽  
David P. Rowell ◽  
...  

Abstract The precipitation and diabatic heating resulting from moist convection make it a key component of the atmospheric water budget in the tropics. With convective parameterization being a known source of uncertainty in global models, convection-permitting (CP) models are increasingly being used to improve understanding of regional climate. Here, a new 10-yr CP simulation is used to study the characteristics of rainfall and atmospheric water budget for East Africa and the Lake Victoria basin. The explicit representation of convection leads to a widespread improvement in the intensities and diurnal cycle of rainfall when compared with a parameterized simulation. Differences in large-scale moisture fluxes lead to a shift in the mean rainfall pattern from the Congo to Lake Victoria basin in the CP simulation—highlighting the important connection between local changes in the representation of convection and larger-scale dynamics and rainfall. Stronger lake–land contrasts in buoyancy in the CP model lead to a stronger nocturnal land breeze over Lake Victoria, increasing evaporation and moisture flux convergence (MFC), and likely unrealistically high rainfall. However, for the mountains east of the lake, the CP model produces a diurnal rainfall cycle much more similar to satellite estimates, which is related to differences in the timing of MFC. Results here demonstrate that, while care is needed regarding lake forcings, a CP approach offers a more realistic representation of several rainfall characteristics through a more physically based realization of the atmospheric dynamics around the complex topography of East Africa.


2021 ◽  
Author(s):  
Jianhui Wei ◽  
Joël Arnault ◽  
Zhenyu Zhang ◽  
Patrick Laux ◽  
Benjamin Fersch ◽  
...  

<p>Land surface characteristics and processes may have complex interactions with the physical and dynamical processes of the atmosphere. However, adequate methods for systemically understanding individual processes of the nonlinearly coupled land-atmosphere continuum are still rare. Therefore, in this study, the age-weighted evaporation tagging approach of Wei et al. (2016) and the three-dimensional online atmospheric water budget analysis of Arnault et al. (2016) were implemented into the Weather Research and Forecast (WRF) model. In addition to the total and tagged atmospheric water states of matter, the latter approach was further extended for age-weighted tagged atmospheric water states of matter, thereby providing a prognostic equation of the residence time of state variables in the atmospheric water cycle.<strong> </strong>This extension allows to systematically quantify the fate of evaporated and transpired water in terms of magnitude, location, composition, and residence time. The extended WRF model was tested for a land use and land cover change study for the Poyang Lake basin, the largest freshwater lake in China. Two hypothetical scenarios, i.e., a dried-up lake and a forest restoration scenario, were simulated and then compared to a real-case control simulation using the original land-use data. The results of the basin-scale precipitation recycling in the context of evapotranspiration partitioning and the modified atmospheric water cycle due to both scenarios will be presented and discussed. We conclude that our newly developed modelling framework and the proposed analysis strategy have the potential to be applied for better understanding and quantifying the nonlinearly intertwined processes between the land and the atmosphere.</p><p>References:</p><p>Arnault, J., Knoche, R., Wei, J., & Kunstmann, H. (2016). Evaporation tagging and atmospheric water budget analysis with WRF: A regional precipitation recycling study for West Africa. Water Resources Research, 52(3), 1544–1567. https://doi.org/10.1002/2015WR017704</p><p>Wei, J., Knoche, R., & Kunstmann, H. (2016). Atmospheric residence times from transpiration and evaporation to precipitation: An age-weighted regional evaporation tagging approach. Journal of Geophysical Research: Atmospheres, 121(12), 6841–6862. https://doi.org/10.1002/2015JD024650</p>


Sign in / Sign up

Export Citation Format

Share Document