A result concerning cardinalities of ultraproducts

1974 ◽  
Vol 39 (1) ◽  
pp. 43-48 ◽  
Author(s):  
H. Jerome Keisler ◽  
Karel Prikry

The cardinality problem for ultraproducts is as follows: Given an ultrafilter over a set I and cardinals αi, i ∈ I, what is the cardinality of the ultraproduct ? Although many special results are known, several problems remain open (see [5] for a survey). For example, consider a uniform ultrafilter over a set I of power κ (uniform means that all elements of have power κ). It is open whether every countably incomplete has the property that, for all infinite α, the ultra-power has power ακ. However, it is shown in [4] that certain countably incomplete , namely the κ-regular , have this property.This paper is about another cardinality property of ultrafilters which was introduced by Eklof [1] to study ultraproducts of abelian groups. It is open whether every countably incomplete ultrafilter has the Eklof property. We shall show that certain countably incomplete ultrafilters, the κ-good ultrafilters, do have this property. The κ-good ultrafilters are important in model theory because they are exactly the ultrafilters such that every ultraproduct modulo is κ-saturated (see [5]).Let be an ultrafilter on a set I. Let αi, n, i ∈ I, n ∈ ω, be cardinals and αi, n, ≥ αi, m if n < m. Let.Then ρn are nonincreasing and therefore there is some m and ρ such that ρn = ρ if n ≥ m. We call ρ the eventual value (abbreviated ev val) of ρn.

1984 ◽  
Vol 49 (1) ◽  
pp. 151-160
Author(s):  
David Rosenthal

There has been much work in developing the interconnections between model theory and algebra. Here we look at a particular example, the divisible ordered abelian groups, and show how the indiscernibles are related to the algebraic structure. Now a divisible ordered abelian group is a model of Th (Q, +, 0, <) and so is linearly ordered by <. Thus the theory is unstable and has a large number of models. It is therefore unrealistic to expect that a simple condition will completely determine a model. Instead we would just like to obtain nice algebraic invariants.Definition. A subset C of a divisible ordered abelian group is a set of (order) indiscernibles iff for every sequence of integers n1,…,nk and for every c1 < … < ck and d1 < … < dk in CNote that this simplified form of indiscernibility is an immediate consequence of quantifier elimination for the theory. The above definition could be formulated in the language of +, 0, < but we have used subtraction as a matter of convenience. Similarly we may also use rational coefficients. Also note that a set of order indiscernibles is usually defined with respect to some external order. But in this case there are only two possibilities: the ordering inherited from or its reverse. So we will always assume that a set of order indiscernibles has the ordering inherited from . We may sometimes refer to a set of indiscernibles as a sequence of indiscernibles if we want to explicitly mention the ordering associated with the set.


2018 ◽  
Vol 83 (1) ◽  
pp. 326-348 ◽  
Author(s):  
RUSSELL MILLER ◽  
BJORN POONEN ◽  
HANS SCHOUTENS ◽  
ALEXANDRA SHLAPENTOKH

AbstractFried and Kollár constructed a fully faithful functor from the category of graphs to the category of fields. We give a new construction of such a functor and use it to resolve a longstanding open problem in computable model theory, by showing that for every nontrivial countable structure${\cal S}$, there exists a countable field${\cal F}$of arbitrary characteristic with the same essential computable-model-theoretic properties as${\cal S}$. Along the way, we develop a new “computable category theory”, and prove that our functor and its partially defined inverse (restricted to the categories of countable graphs and countable fields) are computable functors.


1969 ◽  
Vol 21 ◽  
pp. 702-711 ◽  
Author(s):  
Benson Samuel Brown

If ℭ and ℭ′ are classes of finite abelian groups, we write ℭ + ℭ′ for the smallest class containing the groups of ℭ and of ℭ′. For any positive number r, ℭ < r is the smallest class of abelian groups which contains the groups Zp for all primes p less than r.Our aim in this paper is to prove the following theorem.THEOREM. Iƒ ℭ is a class of finite abelian groups and(i) πi(Y) ∈ℭ for i < n,(ii) H*(X; Z) is finitely generated,(iii) Hi(X;Z)∈ ℭ for i > n + k,ThenThis statement contains many of the classical results of homotopy theory: the Hurewicz and Hopf theorems, Serre's (mod ℭ) version of these theorems, and Eilenberg's classification theorem. In fact, these are all contained in the case k = 0.


1969 ◽  
Vol 21 ◽  
pp. 684-701 ◽  
Author(s):  
Benson Samuel Brown

Our aim in this paper is to prove the general mod ℭ suspension theorem: Suppose that X and Y are CW-complexes,ℭ is a class offinite abelian groups, and that(i) πi(Y) ∈ℭfor all i < n,(ii) H*(X; Z) is finitely generated,(iii) Hi(X;Z) ∈ℭfor all i > k.Then the suspension homomorphismis a(mod ℭ) monomorphism for 2 ≦ r ≦ 2n – k – 2 (when r= 1, ker E is a finite group of order d, where Zd∈ ℭ and is a (mod ℭ) epimorphism for 2 ≦ r ≦ 2n – k – 2The proof is basically the same as the proof of the regular suspension theorem. It depends essentially on (mod ℭ) versions of the Serre exact sequence and of the Whitehead theorem.


2018 ◽  
Vol 83 (3) ◽  
pp. 1204-1216 ◽  
Author(s):  
OLGA KHARLAMPOVICH ◽  
ALEXEI MYASNIKOV

AbstractLet R be a commutative integral unital domain and L a free noncommutative Lie algebra over R. In this article we show that the ring R and its action on L are 0-interpretable in L, viewed as a ring with the standard ring language $+ , \cdot ,0$. Furthermore, if R has characteristic zero then we prove that the elementary theory $Th\left( L \right)$ of L in the standard ring language is undecidable. To do so we show that the arithmetic ${\Bbb N} = \langle {\Bbb N}, + , \cdot ,0\rangle $ is 0-interpretable in L. This implies that the theory of $Th\left( L \right)$ has the independence property. These results answer some old questions on model theory of free Lie algebras.


1984 ◽  
Vol 49 (4) ◽  
pp. 1115-1124
Author(s):  
Francis Oger

AbstractIn [O1], we gave algebraic characterizations of elementary equivalence for finitely generated finite-by-abelian groups, i.e. finitely generated FC-groups. We also provided several examples of finitely generated finite-by-abelian groups which are elementarily equivalent without being isomorphic.In this paper, we shall use our previous results to describe precisely the models of the theories of finitely generated finite-by-abelian groups and the elementary embeddings between these models.


2016 ◽  
Vol 81 (3) ◽  
pp. 1069-1086
Author(s):  
CHARLES C. PINTER

AbstractThe Stone representation theorem was a milestone for the understanding of Boolean algebras. From Stone’s theorem, every Boolean algebra is representable as a field of sets with a topological structure. By means of this, the structural elements of any Boolean algebra, as well as the relations between them, are represented geometrically and can be clearly visualized. It is no different for cylindric algebras: Suppose that ${\frak A}$ is a cylindric algebra and ${\cal S}$ is the Stone space of its Boolean part. (Among the elements of the Boolean part are the diagonal elements.) It is known that with nothing more than a family of equivalence relations on ${\cal S}$ to represent quantifiers, ${\cal S}$ represents the full cylindric structure just as the Stone space alone represents the Boolean structure. ${\cal S}$ with this structure is called a cylindric space.Many assertions about cylindric algebras can be stated in terms of elementary topological properties of ${\cal S}$. Moreover, points of ${\cal S}$ may be construed as models, and on that construal ${\cal S}$ is called a model space. Certain relations between points on this space turn out to be morphisms between models, and the space of models with these relations hints at the possibility of an “abstract” model theory. With these ideas, a point-set version of model theory is proposed, in the spirit of pointless topology or category theory, in which the central insight is to treat the semantic objects (models) homologously with the corresponding syntactic objects so they reside together in the same space.It is shown that there is a new, purely algebraic way of introducing constants in cylindric algebras, leading to a simplified proof of the representation theorem for locally finite cylindric algebras. Simple rich algebras emerge as homomorphic images of cylindric algebras. The topological version of this theorem is especially interesting: The Stone space of every locally finite cylindric algebra ${\frak A}$ can be partitioned into subspaces which are the Stone spaces of all the simple rich homomorphic images of ${\frak A}$. Each of these images completely determines a model of ${\frak A}$, and all denumerable models of ${\frak A}$ appear in this representation.The Stone space ${\cal S}$ of every cylindric algebra can likewise be partitioned into closed sets which are duals of all the types in ${\frak A}$. This fact yields new insights into miscellaneous results in the model theory of saturated models.


1959 ◽  
Vol 1 (1) ◽  
pp. 47-63 ◽  
Author(s):  
E. S. Barnes ◽  
G. E. Wall

Let be a positive definite quadratic form of determinant D, and let M be the minimum of f(x) for integral x ≠ 0. Then we set and the maximum being over all positive forms f in n variables. f is said to be extreme if y γn(f) is a local maximum for varying f, absolutely extreme if y γ(f) is an absolute maximum, i.e. if y γ(f) = γn.


Author(s):  
A. M. Duguid ◽  
D. H. McLain

Let an element of a group be called an FC element if it has only a finite number of conjugates in the group. Baer(1) and Neumann (8) have discussed groups in which every element is FC, and called them FC-groups. Both Abelian and finite groups are trivially FC-groups; Neumann has studied the properties common to FC-groups and Abelian groups, and Baer the properties common to FC-groups and finite groups. Baer has also shown that, for an arbitrary group G, the set H1 of all FC elements is a characteristic subgroup. Haimo (3) has defined the FC-chain of a group G byHi/Hi−1 is the subgroup of all FC elements in G/Hi−1.


1986 ◽  
Vol 38 (2) ◽  
pp. 304-327 ◽  
Author(s):  
R. Göbel ◽  
R. Vergohsen

L. Fuchs states in his book “Infinite Abelian Groups” [6, Vol. I, p. 134] the followingProblem 13. Find conditions on a subgroup of A to be the intersection of a finite number of pure (p-pure) subgroups of A.The answer to this problem will be given as a special case of our theorem below. In order to find a better setting of this problem recall that a subgroup S ⊆ E is p-pure if pnE ∩ S = pnS for all natural numbers. Then S is pure in E if S is p-pure for all primes p. This generalizes to pσ-isotype, a definition due to L. J. Kulikov, cf. [6, Vol. II, p. 75] and [11, pp. 61, 62]. If α is an ordinal, then S is pσ-isotype if


Sign in / Sign up

Export Citation Format

Share Document