On decomposition of Gödelnumberings into Friedbergnumberings

1982 ◽  
Vol 47 (2) ◽  
pp. 267-274 ◽  
Author(s):  
Britta Schinzel

The category of enumerations over P1 is investigated. Objects are the enumerations of the set of partial recursive functions in one variable φ: N → P1 where φ is a total effective function from the natural numbers N onto P1.To each a ∈ P1 we call φ−1(a) the set of all indices for a, the fibre over a.Morphisms from one enumeration φ to another one ψ are (partial) recursive functions f, for which φ(n) = ψ(f(n)) holds for all n where f is denned, i.e. f is fibrepreserving. They are also called translators if f is total. The existence of a translator induces a partial ordering on the enumerations:Let φ ≤ ψ, iff there exists a translator f with φ = ψ·f; φ ≡ ψ iff φ ≤ ψ and ψ ≤ φ. Two enumerations are called incomparable iff φ ≰,ψ and ψ ≰ φ.Given a recursively enumerable family of enumerations {φi}i∈ω then their direct sum = π is defined by a bijective recursive pairing function g(i, n) (e.g. g(i, n) = (i + n)(i + n + 1)/2 + i) summing up the φi by φi(n) = = πg(i, n) into π. We also say π decomposes into .Direct sums satisfy the universal property of sums in categories.We want to operate decompositiontheory on special kinds of objects in our category, the Gödelnumberings and the Friedbergnumberings.A Gödelnumbering φ is defined by (a) enumeration theorem (i.e. φ is object of our category) and (b) -theorem, which means that each m + n-place p.r. function can be effectively replaced by an enumeration of n-place p.r. functions given by means of the total -function (see Rogers [3]).

1984 ◽  
Vol 49 (4) ◽  
pp. 1319-1332 ◽  
Author(s):  
G. Longo ◽  
E. Moggi

AbstractA type-structure of partial effective functionals over the natural numbers, based on a canonical enumeration of the partial recursive functions, is developed. These partial functionals, defined by a direct elementary technique, turn out to be the computable elements of the hereditary continuous partial objects; moreover, there is a commutative system of enumerations of any given type by any type below (relative numberings).By this and by results in [1] and [2], the Kleene-Kreisel countable functionals and the hereditary effective operations (HEO) are easily characterized.


1969 ◽  
Vol 34 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Louise Hay

Let q0, q1,… be a standard enumeration of all partial recursive functions of one variable. For each i, let wi = range qi and for any recursively enumerable (r.e.) set α, let θα = {n | wn = α}. If A is a class of r.e. sets, let θA = the index set of A = {n | wn ∈ A}. It is the purpose of this paper to classify the possible recursive isomorphism types of index sets of finite classes of r.e. sets. The main theorem will also provide an answer to the question left open in [2] concerning the possible double isomorphism types of pairs (θα, θβ) where α ⊂ β.


2018 ◽  
Vol 83 (3) ◽  
pp. 967-990
Author(s):  
GERHARD JÄGER ◽  
TIMOTEJ ROSEBROCK ◽  
SATO KENTARO

AbstractBON+ is an applicative theory and closely related to the first order parts of the standard systems of explicit mathematics. As such it is also a natural framework for abstract computations. In this article we analyze this aspect of BON+ more closely. First a point is made for introducing a new operation τN, called truncation, to obtain a natural formalization of partial recursive functions in our applicative framework. Then we introduce the operational versions of a series of notions that are all equivalent to semi-decidability in ordinary recursion theory on the natural numbers, and study their mutual relationships over BON+ with τN.


1973 ◽  
Vol 38 (4) ◽  
pp. 579-593 ◽  
Author(s):  
M. Blum ◽  
I. Marques

An important goal of complexity theory, as we see it, is to characterize those partial recursive functions and recursively enumerable sets having some given complexity properties, and to do so in terms which do not involve the notion of complexity.As a contribution to this goal, we provide characterizations of the effectively speedable, speedable and levelable [2] sets in purely recursive theoretic terms. We introduce the notion of subcreativeness and show that every program for computing a partial recursive function f can be effectively speeded up on infinitely many integers if and only if the graph of f is subcreative.In addition, in order to cast some light on the concepts of effectively speedable, speedable and levelable sets we show that all maximal sets are levelable (and hence speedable) but not effectively speedable and we exhibit a set which is not levelable in a very strong sense but yet is effectively speedable.


1982 ◽  
Vol 47 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Richard A. Shore

Relativization—the principle that says one can carry over proofs and theorems about partial recursive functions and Turing degrees to functions partial recursive in any given set A and the Turing degrees of sets in which A is recursive—is a pervasive phenomenon in recursion theory. It led H. Rogers, Jr. [15] to ask if, for every degree d, (≥ d), the partial ordering of Turing degrees above d, is isomorphic to all the degrees . We showed in Shore [17] that this homogeneity conjecture is false. More specifically we proved that if, for some n, the degree of Kleene's (the complete set) is recursive in d(n) then ≇ (≤ d). The key ingredient of the proof was a new version of a result from Nerode and Shore [13] (hereafter NS I) that any isomorphism φ: → (≥ d) must be the identity on some cone, i.e., there is an a called the base of the cone such that b ≥ a ⇒ φ(b) = b. This result was combined with information about minimal covers from Jockusch and Soare [8] and Harrington and Kechris [3] to derive a contradiction from the existence of such an isomorphism if deg() ≤ d(n).


1982 ◽  
Vol 47 (1) ◽  
pp. 48-66 ◽  
Author(s):  
Robert E. Byerly

AbstractA set of gödel numbers is invariant if it is closed under automorphisms of (ω, ·), where ω is the set of all gödel numbers of partial recursive functions and · is application (i.e., n · m ≃ φn(m)). The invariant arithmetic sets are investigated, and the invariant recursively enumerable sets and partial recursive functions are partially characterized.


Author(s):  
David J. Lobina

Recursion, or the capacity of ‘self-reference’, has played a central role within mathematical approaches to understanding the nature of computation, from the general recursive functions of Alonzo Church to the partial recursive functions of Stephen C. Kleene and the production systems of Emil Post. Recursion has also played a significant role in the analysis and running of certain computational processes within computer science (viz., those with self-calls and deferred operations). Yet the relationship between the mathematical and computer versions of recursion is subtle and intricate. A recursively specified algorithm, for example, may well proceed iteratively if time and space constraints permit; but the nature of specific data structures—viz., recursive data structures—will also return a recursive solution as the most optimal process. In other words, the correspondence between recursive structures and recursive processes is not automatic; it needs to be demonstrated on a case-by-case basis.


2013 ◽  
Vol 63 (4) ◽  
Author(s):  
Beata Rothkegel

AbstractIn the paper we formulate a criterion for the nonsingularity of a bilinear form on a direct sum of finitely many invertible ideals of a domain. We classify these forms up to isometry and, in the case of a Dedekind domain, up to similarity.


1965 ◽  
Vol 30 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Gaisi Takeuti

In this paper, by a function of ordinals we understand a function which is defined for all ordinals and each of whose value is an ordinal. In [7] (also cf. [8] or [9]) we defined recursive functions and predicates of ordinals, following Kleene's definition on natural numbers. A predicate will be called arithmetical, if it is obtained from a recursive predicate by prefixing a sequence of alternating quantifiers. A function will be called arithmetical, if its representing predicate is arithmetical.The cardinals are identified with those ordinals a which have larger power than all smaller ordinals than a. For any given ordinal a, we denote by the cardinal of a and by 2a the cardinal which is of the same power as the power set of a. Let χ be the function such that χ(a) is the least cardinal which is greater than a.Now there are functions of ordinals such that they are easily defined in set theory, but it seems impossible to define them as arithmetical ones; χ is such a function. If we define χ in making use of only the language on ordinals, it seems necessary to use the notion of all the functions from ordinals, e.g., as in [6].


Sign in / Sign up

Export Citation Format

Share Document