scholarly journals ULTRAHIGH ENERGY NEUTRINOS

2003 ◽  
Vol 18 (22) ◽  
pp. 4085-4096 ◽  
Author(s):  
SHARADA IYER DUTTA ◽  
MARY HALL RENO ◽  
INA SARCEVIC

The ultrahigh energy neutrino cross section is well understood in the standard model for neutrino energies up to 1012 GeV, Tests of neutrino oscillations (νμ ↔ ντ) from extragalactic sources of neutrinos are possible with large underground detectors. Measurements of horizontal air shower event rates at neutrino energies above 1010 GeV will be able to constrain nonstandard model contributions to the neutrino-nucleon cross section, e.g., from mini-black hole production.

2005 ◽  
Vol 20 (19) ◽  
pp. 1465-1482
Author(s):  
R. M. GARCÍA-HIDALGO ◽  
A. ROSADO

We discuss W and Z production through the deep inelastic [Formula: see text]-scattering in the context of the standard model SU (3)C× SU (2)L× U (1) of the strong and electroweak interactions. We find the cross-section rates for the process [Formula: see text] for the case of ultrahigh-energy neutrinos (1014 eV ≤Eν≤1017 eV ) colliding on a target nucleon [Formula: see text]. We also calculate [Formula: see text] in order to compare it with [Formula: see text]. We show that the cross-section rates for the process [Formula: see text] did not become so large as one could expect, due to the strong destructive interference between the two different mechanisms which contribute at the lowest order in α (keeping only photon exchange diagrams). This destructive interference mechanism is inherent to the standard model as a non-Abelian gauge theory.


1993 ◽  
Vol 02 (04) ◽  
pp. 915-921 ◽  
Author(s):  
C. RANGACHARYULU ◽  
A. RICHTER

It is pointed out that the y-dependence of the differential cross-section for various types of neutrinos on the electron promises to be a sensitive testing ground of the electroweak Standard Model at KAON in Vancouver. Estimates of the flux requirements are given and the feasibility of such experiments is discussed.


2001 ◽  
Vol 16 (supp01b) ◽  
pp. 825-827
Author(s):  
◽  
JOÃO GUIMARÃES DA COSTA

The Tevatron is expected to be most sensitive to the Standard Model Higgs in its associated production with a W or Z boson. The Collider Detector at Fermilab (CDF) has performed individual searches for such production in each decay channel of the vector boson, assuming that the Higgs decays to [Formula: see text]. These searches use data collected by CDF during the 1992-95 run. The individual results are reviewed, and a combined cross section limit is presented.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
S. C. İnan ◽  
M. Köksal

We examine the effect of excited neutrinos on the annihilation of relic neutrinos with ultrahigh energy cosmic neutrinos for theνν¯→γγprocess. The contributions of the excited neutrinos to the neutrino-photon decoupling temperature are calculated. We see that photon-neutrino decoupling temperature can be significantly reduced below the obtained value of the Standard Model with the impact of excited neutrinos.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Alexander Lind ◽  
Andrea Banfi

AbstractWe present H1jet, a fast code that computes the total cross section and differential distribution in the transverse momentum of a colour singlet. In its current version, the program implements only leading-order $$2\rightarrow 1$$ 2 → 1 and $$2\rightarrow 2$$ 2 → 2 processes, but could be extended to higher orders. We discuss the processes implemented in H1jet, give detailed instructions on how to implement new processes, and perform comparisons to existing codes. This tool, mainly designed for theorists, can be fruitfully used to assess deviations of selected new physics models from the Standard Model behaviour, as well as to quickly obtain distributions of relevance for Standard Model phenomenology.


2019 ◽  
Vol 34 (38) ◽  
pp. 2050065
Author(s):  
Gabriel Facini ◽  
Kyrylo Merkotan ◽  
Matthias Schott ◽  
Alexander Sydorenko

Fiducial production cross-section measurements of Standard Model processes, in principle, provide constraints on new physics scenarios via a comparison of the predicted Standard Model cross-section and the observed cross-section. This approach received significant attention in recent years, both from direct constraints on specific models and the interpretation of measurements in the view of effective field theories. A generic problem in the reinterpretation of Standard Model measurements is the corrections application of to data to account for detector effects. These corrections inherently assume the Standard Model to be valid, thus implying a model bias of the final result. In this work, we study the size of this bias by studying several new physics models and fiducial phase–space regions. The studies are based on fast detector simulations of a generic multi-purpose detector at the Large Hadron Collider. We conclude that the model bias in the associated reinterpretations is negligible only in specific cases, however, typically on the same level as systematic uncertainties of the available measurements.


2019 ◽  
Vol 16 (09) ◽  
pp. 1950138
Author(s):  
A. Belfakir ◽  
A. belhaj ◽  
Y. El Maadi ◽  
S. E. Ennadifi ◽  
Y. Hassouni ◽  
...  

Using the toroidal compactification of string theory on [Formula: see text]-dimensional tori, [Formula: see text], we investigate dyonic objects in arbitrary dimensions. First, we present a class of dyonic black solutions formed by two different D-branes using a correspondence between toroidal cycles and objects possessing both magnetic and electric charges, belonging to [Formula: see text] dyonic gauge symmetry. This symmetry could be associated with electrically charged magnetic monopole solutions in stringy model buildings of the standard model (SM) extensions. Then, we consider in some detail such black hole classes obtained from even-dimensional toroidal compactifications, and we find that they are linked to [Formula: see text] Clifford algebras using the vee product. It is believed that this analysis could be extended to dyonic objects which can be obtained from local Calabi–Yau manifold compactifications.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

AbstractHiggs boson properties are studied in the four-lepton decay channel (where lepton = e, $$\mu $$ μ ) using 139 $$\hbox {fb}^{-1}$$ fb - 1 of proton–proton collision data recorded at $$\sqrt{s}=$$ s = 13 TeV by the ATLAS experiment at the Large Hadron Collider. The inclusive cross-section times branching ratio for $$H\rightarrow ZZ^*$$ H → Z Z ∗ decay is measured to be $$1.34 \pm 0.12$$ 1.34 ± 0.12  pb for a Higgs boson with absolute rapidity below 2.5, in good agreement with the Standard Model prediction of $$1.33 \pm 0.08$$ 1.33 ± 0.08  pb. Cross-sections times branching ratio are measured for the main Higgs boson production modes in several exclusive phase-space regions. The measurements are interpreted in terms of coupling modifiers and of the tensor structure of Higgs boson interactions using an effective field theory approach. Exclusion limits are set on the CP-even and CP-odd ‘beyond the Standard Model’ couplings of the Higgs boson to vector bosons, gluons and top quarks.


Sign in / Sign up

Export Citation Format

Share Document