Stationary reflections for uncountable cofinality

1986 ◽  
Vol 51 (1) ◽  
pp. 147-151 ◽  
Author(s):  
Péter Komjáth

It was J. E. Baumgartner who in [1] proved that when a weakly compact cardinal is Lévy-collapsed to ω2 the new ω2 inherits some of the large cardinal properties; e.g. if S is a stationary set of ω-limits in ω2 then for some α < ω2, S ∩ α is stationary in α. Later S. Shelah extended this to the following theorem: if a supercompact cardinal κ is Lévy-collapsed to ω2, then in the resulting model the following holds: if S ⊆ λ is a stationary set of ω-limits and cf(λ) ≥ ω2 then there is an α. < λ such that S ∩ α is stationary in α, i.e. stationary reflection holds for countable cofinality (see [1] and [3]). These theorems are important prototypes of small cardinal compactness theorems; many applications and generalizations can be found in the literature. One might think that these results are true for sets with an uncountable cofinality μ as well, i.e. when an appropriate large cardinal is collapsed to μ++. Though this is true for Baumgartner's theorem, there remains a problem with Shelah's result. The point is that the lemma stating that a stationary set of ω-limits remains stationary after forcing with an ω2-closed partial order may be false in the case of μ-limits in a cardinal of the form λ+ with cf(λ) < μ, as was shown in [8] by Shelah. The problem has recently been solved by Baumgartner, who observed that if a universal box-sequence on the class of those ordinals with cofinality ≤ μ exists, the lemma still holds, and a universal box-sequence of the above type can be added without destroying supercompact cardinals beyond μ.

2018 ◽  
Vol 83 (1) ◽  
pp. 349-371
Author(s):  
JAMES CUMMINGS ◽  
SY-DAVID FRIEDMAN ◽  
MENACHEM MAGIDOR ◽  
ASSAF RINOT ◽  
DIMA SINAPOVA

AbstractThree central combinatorial properties in set theory are the tree property, the approachability property and stationary reflection. We prove the mutual independence of these properties by showing that any of their eight Boolean combinations can be forced to hold at${\kappa ^{ + + }}$, assuming that$\kappa = {\kappa ^{ < \kappa }}$and there is a weakly compact cardinal aboveκ.If in additionκis supercompact then we can forceκto be${\aleph _\omega }$in the extension. The proofs combine the techniques of adding and then destroying a nonreflecting stationary set or a${\kappa ^{ + + }}$-Souslin tree, variants of Mitchell’s forcing to obtain the tree property, together with the Prikry-collapse poset for turning a large cardinal into${\aleph _\omega }$.


1979 ◽  
Vol 44 (4) ◽  
pp. 563-565
Author(s):  
Carl F. Morgenstern

It is well known that the first strongly inaccessible cardinal is strictly less than the first weakly compact cardinal which in turn is strictly less than the first Ramsey cardinal, etc. However, once one passes the first measurable cardinal the inequalities are no longer strict. Magidor [3] has shown that the first strongly compact cardinal may be equal to the first measurable cardinal or equal to the first super-compact cardinal (the first supercompact cardinal is strictly larger than the first measurable cardinal). In this note we will indicate how Magidor's methods can be used to show that it is undecidable whether one cardinal (the first strongly compact) is greater than or less than another large cardinal (the first huge cardinal). We assume that the reader is familiar with the ultrapower construction of Scott, as presented in Drake [1] or Kanamori, Reinhardt and Solovay [2].Definition. A cardinal κ is huge (or 1-huge) if there is an elementary embedding j of the universe V into a transitive class M such that M contains the ordinals, is closed under j(κ) sequences, j(κ) > κ and j ↾ Rκ = id. Let κ denote the first huge cardinal, and let λ = j(κ).One can see from easy reflection arguments that κ and λ are inaccessible in V and, in fact, that κ is measurable in V.


1982 ◽  
Vol 47 (4) ◽  
pp. 755-771 ◽  
Author(s):  
Menachem Magidor

AbstractWe prove that the statement “For every pair A, B, stationary subsets of ω2, composed of points of cofinality ω, there exists an ordinal α such that both A ∩ α and B ∩ α are stationary subsets of α is equiconsistent with the existence of weakly compact cardinal. (This completes results of Baumgartner and Harrington and Shelah.)We also prove, assuming the existence of infinitely many supercompact cardinals, the statement “Every stationary subset of ωω+1 has a stationary initial segment.”


2015 ◽  
Vol 54 (5-6) ◽  
pp. 491-510 ◽  
Author(s):  
Brent Cody ◽  
Moti Gitik ◽  
Joel David Hamkins ◽  
Jason A. Schanker

2021 ◽  
Vol 9 ◽  
Author(s):  
Jeffrey Bergfalk ◽  
Chris Lambie-Hanson

Abstract In 1988, Sibe Mardešić and Andrei Prasolov isolated an inverse system $\textbf {A}$ with the property that the additivity of strong homology on any class of spaces which includes the closed subsets of Euclidean space would entail that $\lim ^n\textbf {A}$ (the nth derived limit of $\textbf {A}$ ) vanishes for every $n>0$ . Since that time, the question of whether it is consistent with the $\mathsf {ZFC}$ axioms that $\lim ^n \textbf {A}=0$ for every $n>0$ has remained open. It remains possible as well that this condition in fact implies that strong homology is additive on the category of metric spaces. We show that assuming the existence of a weakly compact cardinal, it is indeed consistent with the $\mathsf {ZFC}$ axioms that $\lim ^n \textbf {A}=0$ for all $n>0$ . We show this via a finite-support iteration of Hechler forcings which is of weakly compact length. More precisely, we show that in any forcing extension by this iteration, a condition equivalent to $\lim ^n\textbf {A}=0$ will hold for each $n>0$ . This condition is of interest in its own right; namely, it is the triviality of every coherent n-dimensional family of certain specified sorts of partial functions $\mathbb {N}^2\to \mathbb {Z}$ which are indexed in turn by n-tuples of functions $f:\mathbb {N}\to \mathbb {N}$ . The triviality and coherence in question here generalise the classical and well-studied case of $n=1$ .


1999 ◽  
Vol 64 (4) ◽  
pp. 1675-1688
Author(s):  
Arthur W. Apter

AbstractWe extend earlier work (both individual and joint with Shelah) and prove three theorems about the class of measurable limits of compact cardinals, where a compact cardinal is one which is either strongly compact or supercompact. In particular, we construct two models in which every measurable limit of compact cardinals below the least supercompact limit of supercompact cardinals possesses non-trivial degrees of supercompactness. In one of these models, every measurable limit of compact cardinals is a limit of supercompact cardinals and also a limit of strongly compact cardinals having no non-trivial degree of supercompactness. We also show that it is consistent for the least supercompact cardinal κ to be a limit of strongly compact cardinals and be so that every measurable limit of compact cardinals below κ has a non-trivial degree of supercompactness. In this model, the only compact cardinals below κ with a non-trivial degree of supercompactness are the measurable limits of compact cardinals.


2013 ◽  
Vol 13 (01) ◽  
pp. 1350003 ◽  
Author(s):  
TOSHIYASU ARAI

We show that the existence of a weakly compact cardinal over the Zermelo–Fraenkel's set theory ZF is proof-theoretically reducible to iterations of Mostowski collapsings and Mahlo operations.


2014 ◽  
Vol 79 (4) ◽  
pp. 1092-1119 ◽  
Author(s):  
WILL BONEY

AbstractWe show that Shelah’s Eventual Categoricity Conjecture for successors follows from the existence of class many strongly compact cardinals. This is the first time the consistency of this conjecture has been proven. We do so by showing that every AEC withLS(K) below a strongly compact cardinalκis <κ-tame and applying the categoricity transfer of Grossberg and VanDieren [11]. These techniques also apply to measurable and weakly compact cardinals and we prove similar tameness results under those hypotheses. We isolate a dual property to tameness, calledtype shortness, and show that it follows similarly from large cardinals.


1983 ◽  
Vol 48 (2) ◽  
pp. 387-398 ◽  
Author(s):  
Yuri Gurevich ◽  
Menachem Magidor ◽  
Saharon Shelah

AbstractAssume ZFC + “There is a weakly compact cardinal” is consistent. Then:(i) For every S ⊆ ω, ZFC + “S and the monadic theory of ω2 are recursive each in the other” is consistent; and(ii) ZFC + “The full second-order theory of ω2 is interpretable in the monadic theory of ω2” is consistent.


1985 ◽  
Vol 50 (3) ◽  
pp. 597-603
Author(s):  
M. Gitik ◽  
M. Magidor ◽  
H. Woodin

AbstractIt is proven that the following statement:“there exists a club C ⊆ κ such that every α ∈ C is an inaccessible cardinal in L and, for every δ a limit point of C, C ∩ δ is almost contained in every club of δ of L”is equiconsistent with a weakly compact cardinal if δ = ℵ1, and with a weakly compact cardinal of order 1 if δ = ℵ2.


Sign in / Sign up

Export Citation Format

Share Document