On the ultrafilters and ultrapowers of strong partition cardinals

1984 ◽  
Vol 49 (4) ◽  
pp. 1268-1272
Author(s):  
J.M. Henle ◽  
E.M. Kleinberg ◽  
R.J. Watro

A strong partition cardinal is an uncountable well-ordered cardinal κ such that every partition of [κ]κ (the size κ subsets of κ) into less than κ many pieces has a homogeneous set of size κ. The existence of such cardinals is inconsistent with the axiom of choice, and our work concerning them is carried out in ZF set theory with just dependent choice (DC). The consistency of strong partition cardinals with this weaker theory remains an open question. The axiom of determinacy (AD) implies that a large number of cardinals including ℵ1 have the strong partition property. The hypothesis that AD holds in the inner model of constructible sets built over the real numbers as urelements has important consequences for descriptive set theory, and results concerning strong partition cardinals are often applied in this context. Kechris [4] and Kechris et al. [5] contain further information concerning the relationship between AD and strong partition cardinals.We assume familiarity with the basic results on strong partition cardinals as developed in Kleinberg [6], [7], [8] and Henle [2]. Recall that a strong partition cardinal κ is measurable; in fact every stationary subset of κ is measure one under some normal measure on κ. If μ is a countably additive ultrafilter extending the closed unbounded filter on κ, then the length of the ultrapower [κ]κ under the less than almost everywhere μ ordering is again a measurable cardinal. In §1 below we establish a polarized partition property on these measurable cardinals.

2019 ◽  
Vol 85 (1) ◽  
pp. 338-366 ◽  
Author(s):  
JUAN P. AGUILERA ◽  
SANDRA MÜLLER

AbstractWe determine the consistency strength of determinacy for projective games of length ω2. Our main theorem is that $\Pi _{n + 1}^1 $-determinacy for games of length ω2 implies the existence of a model of set theory with ω + n Woodin cardinals. In a first step, we show that this hypothesis implies that there is a countable set of reals A such that Mn (A), the canonical inner model for n Woodin cardinals constructed over A, satisfies $$A = R$$ and the Axiom of Determinacy. Then we argue how to obtain a model with ω + n Woodin cardinal from this.We also show how the proof can be adapted to investigate the consistency strength of determinacy for games of length ω2 with payoff in $^R R\Pi _1^1 $ or with σ-projective payoff.


1982 ◽  
Vol 5 (4) ◽  
pp. 817-821
Author(s):  
Donald H. Pelletier

The partition property for measures onPℋλwas formulated by analogy with a property which Rowbottom [1] proved was possessed by every normal measure on a measurable cardinal. This property has been studied in [2], [3], and [4]. This note summarizes [5] and [6], which contain results relating the partition property with the extendibility of the measure and with an auxiliary combinatorial property introduced by Menas in [4]. Detailed proofs will appear in [5] and [6].


2020 ◽  
Vol 30 (1) ◽  
pp. 447-457
Author(s):  
Michael Rathjen

Abstract While power Kripke–Platek set theory, ${\textbf{KP}}({\mathcal{P}})$, shares many properties with ordinary Kripke–Platek set theory, ${\textbf{KP}}$, in several ways it behaves quite differently from ${\textbf{KP}}$. This is perhaps most strikingly demonstrated by a result, due to Mathias, to the effect that adding the axiom of constructibility to ${\textbf{KP}}({\mathcal{P}})$ gives rise to a much stronger theory, whereas in the case of ${\textbf{KP}}$, the constructible hierarchy provides an inner model, so that ${\textbf{KP}}$ and ${\textbf{KP}}+V=L$ have the same strength. This paper will be concerned with the relationship between ${\textbf{KP}}({\mathcal{P}})$ and ${\textbf{KP}}({\mathcal{P}})$ plus the axiom of choice or even the global axiom of choice, $\textbf{AC}_{\tiny {global}}$. Since $L$ is the standard vehicle to furnish a model in which this axiom holds, the usual argument for demonstrating that the addition of ${\textbf{AC}}$ or $\textbf{AC}_{\tiny {global}}$ to ${\textbf{KP}}({\mathcal{P}})$ does not increase proof-theoretic strength does not apply in any obvious way. Among other tools, the paper uses techniques from ordinal analysis to show that ${\textbf{KP}}({\mathcal{P}})+\textbf{AC}_{\tiny {global}}$ has the same strength as ${\textbf{KP}}({\mathcal{P}})$, thereby answering a question of Mathias. Moreover, it is shown that ${\textbf{KP}}({\mathcal{P}})+\textbf{AC}_{\tiny {global}}$ is conservative over ${\textbf{KP}}({\mathcal{P}})$ for $\varPi ^1_4$ statements of analysis. The method of ordinal analysis for theories with power set was developed in an earlier paper. The technique allows one to compute witnessing information from infinitary proofs, providing bounds for the transfinite iterations of the power set operation that are provable in a theory. As the theory ${\textbf{KP}}({\mathcal{P}})+\textbf{AC}_{\tiny {global}}$ provides a very useful tool for defining models and realizability models of other theories that are hard to construct without access to a uniform selection mechanism, it is desirable to determine its exact proof-theoretic strength. This knowledge can for instance be used to determine the strength of Feferman’s operational set theory with power set operation as well as constructive Zermelo–Fraenkel set theory with the axiom of choice.


1995 ◽  
Vol 1 (1) ◽  
pp. 75-84 ◽  
Author(s):  
John R. Steel

In this paper we shall answer some questions in the set theory of L(ℝ), the universe of all sets constructible from the reals. In order to do so, we shall assume ADL(ℝ), the hypothesis that all 2-person games of perfect information on ω whose payoff set is in L(ℝ) are determined. This is by now standard practice. ZFC itself decides few questions in the set theory of L(ℝ), and for reasons we cannot discuss here, ZFC + ADL(ℝ) yields the most interesting “completion” of the ZFC-theory of L(ℝ).ADL(ℝ) implies that L(ℝ) satisfies “every wellordered set of reals is countable”, so that the axiom of choice fails in L(ℝ). Nevertheless, there is a natural inner model of L(ℝ), namely HODL(ℝ), which satisfies ZFC. (HOD is the class of all hereditarily ordinal definable sets, that is, the class of all sets x such that every member of the transitive closure of x is definable over the universe from ordinal parameters (i.e., “OD”). The superscript “L(ℝ)” indicates, here and below, that the notion in question is to be interpreted in L(R).) HODL(ℝ) is reasonably close to the full L(ℝ), in ways we shall make precise in § 1. The most important of the questions we shall answer concern HODL(ℝ): what is its first order theory, and in particular, does it satisfy GCH?These questions first drew attention in the 70's and early 80's. (See [4, p. 223]; also [12, p. 573] for variants involving finer notions of definability.)


1977 ◽  
Vol 42 (4) ◽  
pp. 523-526 ◽  
Author(s):  
J. M. Henle

Beginning with Ramsey's theorem of 1930, combinatorists have been intrigued with the notion of large cardinals satisfying partition relations. Years of research have established the smaller ones, weakly ineffable, Erdös, Jonsson, Rowbottom and Ramsey cardinals to be among the most interesting and important large cardinals in set theory. Recently, cardinals satisfying more powerful infinite-exponent partition relations have been examined with growing interest. This is due not only to their inherent qualities and the fact that they imply the existence of other large cardinals (Kleinberg [2], [3]), but also to the fact that the Axiom of Determinacy (AD) implies the existence of great numbers of such cardinals (Martin [5]).That these properties are more often than not inconsistent with the full Axiom of Choice (Kleinberg [4]) somewhat increases their charm, for the theorems concerning them tend to be a little odd, and their proofs, circumforaneous. The properties are, as far as anyone knows, however, consistent with Dependent Choice (DC).Our basic theorem will be the following: If k > ω and k satisfies k→(k)k then the least cardinal δ such that has a δ-additive, uniform ultrafilter. In addition, if ACω is assumed, we will show that δ is greater than ω, and hence a measurable cardinal. This result will be strengthened somewhat when we prove that for any k, δ, if then .


1951 ◽  
Vol 16 (3) ◽  
pp. 161-190 ◽  
Author(s):  
J. C. Shepherdson

One of the standard ways of proving the consistency of additional hypotheses with the basic axioms of an axiom system is by the construction of what may be described as ‘inner models.’ By starting with a domain of individuals assumed to satisfy the basic axioms an inner model is constructed whose domain of individuals is a certain subset of the original individual domain. If such an inner model can be constructed which satisfies not only the basic axioms but also the particular additional hypothesis under consideration, then this affords a proof that if the basic axiom system is consistent then so is the system obtained by adding to this system the new hypothesis. This method has been applied to axiom systems for set theory by many authors, including v. Neumann (4), Mostowski (5), and more recently Gödel (1), who has shown by this method that if the basic axioms of a certain axiomatic system of set theory are consistent then so is the system obtained by adding to these axioms a strong form of the axiom of choice and the generalised continuum hypothesis. Having been shown in this striking way the power of this method it is natural to inquire whether it has any limitations or whether by the construction of a sufficiently ingenious inner model one might hope to decide other outstanding consistency questions, such as the consistency of the negations of the axiom of choice and continuum hypothesis. In this and two following papers we prove some general theorems concerning inner models for a certain axiomatic system of set theory which lead to the result that as far as a fairly large family of inner models are concerned this method of proving consistency has been exhausted, that no essentially new consistency results can be obtained by the use of this kind of model.


1978 ◽  
Vol 43 (3) ◽  
pp. 613-613 ◽  
Author(s):  
Stephen C. Kleene

Gödel has called to my attention that p. 773 is misleading in regard to the discovery of the finite axiomatization and its place in his proof of the consistency of GCH. For the version in [1940], as he says on p. 1, “The system Σ of axioms for set theory which we adopt [a finite one] … is essentially due to P. Bernays …”. However, it is not at all necessary to use a finite axiom system. Gödel considers the more suggestive proof to be the one in [1939], which uses infinitely many axioms.His main achievement regarding the consistency of GCH, he says, really is that he first introduced the concept of constructible sets into set theory defining it as in [1939], proved that the axioms of set theory (including the axiom of choice) hold for it, and conjectured that the continuum hypothesis also will hold. He told these things to von Neumann during his stay at Princeton in 1935. The discovery of the proof of this conjecture On the basis of his definition is not too difficult. Gödel gave the proof (also for GCH) not until three years later because he had fallen ill in the meantime. This proof was using a submodel of the constructible sets in the lowest case countable, similar to the one commonly given today.


Author(s):  
John P. Burgess

the ‘universe’ of constructible sets was introduced by Kurt Gödel in order to prove the consistency of the axiom of choice (AC) and the continuum hypothesis (CH) with the basic (ZF) axioms of set theory. The hypothesis that all sets are constructible is the axiom of constructibility (V = L). Gödel showed that if ZF is consistent, then ZF + V = L is consistent, and that AC and CH are provable in ZF + V = L.


2000 ◽  
Vol 6 (2) ◽  
pp. 176-184 ◽  
Author(s):  
Ralf-Dieter Schindler

The present paper investigates the power of proper forcings to change the shape of the universe, in a certain well-defined respect. It turns out that the ranking among large cardinals can be used as a measure for that power. However, in order to establish the final result I had to isolate a new large cardinal concept, which I dubbed “remarkability.” Let us approach the exact formulation of the problem—and of its solution—at a slow pace.Breathtaking developments in the mid 1980s found one of its culminations in the theorem, due to Martin, Steel, and Woodin, that the existence of infinitely many Woodin cardinals with a measurable cardinal above them all implies that AD, the axiom of determinacy, holds in the least inner model containing all the reals, L(ℝ) (cf. [6[, p. 91). One of the nice things about AD is that the theory ZF + AD + V = L(ℝ) appears as a choiceless “completion” of ZF in that any interesting question (in particular, about sets of reals) seems to find an at least attractive answer in that theory (cf., for example, [5] Chap. 6). (Compare with ZF + V = L!) Beyond that, AD is very canonical as may be illustrated as follows.Let us say that L(ℝ) is absolute for set-sized forcings if for all posets P ∈ V, for all formulae ϕ, and for all ∈ ℝ do we have thatwhere is a name for the set of reals in the extension.


1980 ◽  
Vol 45 (3) ◽  
pp. 623-628 ◽  
Author(s):  
Mitchell Spector

The usefulness of measurable cardinals in set theory arises in good part from the fact that an ultraproduct of wellfounded structures by a countably complete ultrafilter is wellfounded. In the standard proof of the wellfoundedness of such an ultraproduct, one first shows, without any use of the axiom of choice, that the ultraproduct contains no infinite descending chains. One then completes the proof by noting that, assuming the axiom of choice, any partial ordering with no infinite descending chain is wellfounded. In fact, the axiom of dependent choices (a weakened form of the axiom of choice) suffices. It is therefore of interest to ask whether some use of the axiom of choice is needed in order to prove the wellfoundedness of such ultraproducts or whether, on the other hand, their wellfoundedness can be proved in ZF alone. In Theorem 1, we show that the axiom of choice is needed for the proof (assuming the consistency of a strong partition relation). Theorem 1 also contains some related consistency results concerning infinite exponent partition relations. We then use Theorem 1 to show how to change the cofinality of a cardinal κ satisfying certain partition relations to any regular cardinal less than κ, while introducing no new bounded subsets of κ. This generalizes a theorem of Prikry [5].


Sign in / Sign up

Export Citation Format

Share Document