Large discrete parts of the E-tree

1988 ◽  
Vol 53 (3) ◽  
pp. 980-984 ◽  
Author(s):  
Harold Simmons

Let PA be first order Peano arithmetic, let Λ be the lattice of Π1 sentences modulo PA, and let S be the poset of prime filters of Λ ordered by reverse inclusion. We show there are large convex discrete parts of S; in particular there are convex parts which form a completed Baire tree or an Aronszajn tree.The elements of S, which we call nodes, correspond to the extensions of PA which are complete for sentences. Equivalently, for each model of PA the Π1-theory ∀() of is a node, and every node occurs in this form. Note that the Π1-theory ∀() of the standard model (i.e. the filter of true Π1 sentences) is the unique root of S.This poset S, which is sometimes called the E-tree, was first studied in [1] where it is shown that:(1) The poset is tree-like, i.e. the set of predecessors of any node is linearly ordered.(2) The poset has branches, each of which is closed under unions and intersections; in particular each branch has a maximum member.(3) There are branches on which ∀() does not have an immediate successor. Further properties of the E-tree are given in [2]−[7]. In particular in [4] Misercque shows that:(4) There are branches on which ∀() does have an immediate successor.(5) There are nodes with both an immediate predecessor and an immediate successor.The two results (3) and (4) show that there are fundamentally different branches of S, and (5) shows that parts of branches may be discrete.

1984 ◽  
Vol 49 (2) ◽  
pp. 425-436 ◽  
Author(s):  
Julia Knight ◽  
Alistair H. Lachlan ◽  
Robert I. Soare

Let PA be the theory of first order Peano arithmetic, in the language L with binary operation symbols + and ·. Let N be the theory of the standard model of PA. We consider countable models M of PA such that the universe ∣M∣ is ω. The degree of such a model M, denoted by deg(M), is the (Turing) degree of the atomic diagram of M. The results of this paper concern the degrees of models of N, but here in the Introduction, we shall give a brief survey of results about degrees of models of PA.Let D0 denote the set of degrees d such that there is a nonstandard model of M of PA with deg(M) = d. Here are some of the more easily stated results about D0.(1) There is no recursive nonstandard model of PA; i.e., 0 ∈ D0.This is a result of Tennenbaum [T].(2) There existsd ∈ D0such thatd ≤ 0′.This follows from the standard Henkin argument.(3) There existsd ∈ D0such thatd < 0′.Shoenfield [Sh1] proved this, using the Kreisel-Shoenfield basis theorem.(4) There existsd ∈ D0such thatd′ = 0′.Jockusch and Soare [JS] improved the Kreisel-Shoenfield basis theorem and obtained (4).(5) D0 = Dc = De, where Dc denotes the set of degrees of completions of PA and De the set of degrees d such that d separates a pair of effectively inseparable r.e. sets.Solovay noted (5) in a letter to Soare in which in answer to a question posed in [JS] he showed that Dc is upward closed.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Djuna Croon ◽  
Oliver Gould ◽  
Philipp Schicho ◽  
Tuomas V. I. Tenkanen ◽  
Graham White

Abstract We critically examine the magnitude of theoretical uncertainties in perturbative calculations of fist-order phase transitions, using the Standard Model effective field theory as our guide. In the usual daisy-resummed approach, we find large uncertainties due to renormalisation scale dependence, which amount to two to three orders-of-magnitude uncertainty in the peak gravitational wave amplitude, relevant to experiments such as LISA. Alternatively, utilising dimensional reduction in a more sophisticated perturbative approach drastically reduces this scale dependence, pushing it to higher orders. Further, this approach resolves other thorny problems with daisy resummation: it is gauge invariant which is explicitly demonstrated for the Standard Model, and avoids an uncontrolled derivative expansion in the bubble nucleation rate.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Kohei Fujikura ◽  
Keisuke Harigaya ◽  
Yuichiro Nakai ◽  
Ruoquan Wang

Abstract We propose a framework where a phase transition associated with a gauge symmetry breaking that occurs (not far) above the electroweak scale sets a stage for baryogenesis similar to the electroweak baryogenesis in the Standard Model. A concrete realization utilizes the breaking of SU(2)R× U(1)X→ U(1)Y. New chiral fermions charged under the extended gauge symmetry have nonzero lepton numbers, which makes the B − L symmetry anomalous. The new lepton sector contains a large flavor-dependent CP violation, similar to the Cabibbo-Kobayashi-Maskawa phase, without inducing sizable electric dipole moments of the Standard Model particles. A bubble wall dynamics associated with the first-order phase transition and SU(2)R sphaleron processes generate a lepton asymmetry, which is transferred into a baryon asymmetry via the ordinary electroweak sphaleron process. Unlike the Standard Model electroweak baryogenesis, the new phase transition can be of the strong first order and the new CP violation is not significantly suppressed by Yukawa couplings, so that the observed asymmetry can be produced. The model can be probed by collider searches for new particles and the observation of gravitational waves. One of the new leptons becomes a dark matter candidate. The model can be also embedded into a left-right symmetric theory to solve the strong CP problem.


1993 ◽  
Vol 71 (5-6) ◽  
pp. 227-236 ◽  
Author(s):  
M. E. Carrington

There has been much recent interest in the finite-temperature effective potential of the standard model in the context of the electroweak phase transition. We review the calculation of the effective potential with particular emphasis on the validity of the expansions that are used. The presence of a term that is cubic in the Higgs condensate in the one-loop effective potential appears to indicate a first-order electroweak phase transition. However, in the high-temperature regime, the infrared singularities inherent in massless models produce cubic terms that are of the same order in the coupling. In this paper, we discuss the inclusion of an infinite set of these terms via the ring-diagram summation, and show that the standard model has a first-order phase transition in the weak coupling expansion.


1972 ◽  
Vol 37 (3) ◽  
pp. 562-568
Author(s):  
Andreas Blass

Consider the Löwenheim-Skolem theorem in the form: If a theory in a countable first-order language has a model, then it has a countable model. As is well known, this theorem becomes false if one omits the hypothesis that the language be countable, for one then has the following trivial counterexample.Example 1. Let the language have uncountably many constants, and let the theory say that they are unequal.To motivate some of our future definitions and to introduce some notation, we present another, less trivial, counterexample.Example 2. Let L0 be the language whose n-place predicate (resp. function) symbols are all the n-place predicates (resp. functions) on the set ω of natural numbers. Let be the standard model for L0; we use the usual notation Th() for its complete theory. Add to L0 a new constant e, and add to Th() an axiom schema saying that e is infinite. By the compactness theorem, the resulting theory T has models. However, none of its models are countable. Although this fact is well known, we sketch a proof in order to refer to it later.By [5, p. 81], there is a family {Aα ∣ < α < c} of infinite subsets of ω, the intersection of any two of which is finite.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Marc Barroso Mancha ◽  
Tomislav Prokopec ◽  
Bogumiła Świeżewska

Abstract We derive a general quantum field theoretic formula for the force acting on expanding bubbles of a first order phase transition in the early Universe setting. In the thermodynamic limit the force is proportional to the entropy increase across the bubble of active species that exert a force on the bubble interface. When local thermal equilibrium is attained, we find a strong friction force which grows as the Lorentz factor squared, such that the bubbles quickly reach stationary state and cannot run away. We also study an opposite case when scatterings are negligible across the wall (ballistic limit), finding that the force saturates for moderate Lorentz factors thus allowing for a runaway behavior. We apply our formalism to a massive real scalar field, the standard model and its simple portal extension. For completeness, we also present a derivation of the renormalized, one-loop, thermal energy-momentum tensor for the standard model and demonstrate its gauge independence.


1982 ◽  
Vol 47 (2) ◽  
pp. 416-422 ◽  
Author(s):  
L. A. S. Kirby

Flipping properties were introduced in set theory by Abramson, Harrington, Kleinberg and Zwicker [1]. Here we consider them in the context of arithmetic and link them with combinatorial properties of initial segments of nonstandard models studied in [3]. As a corollary we obtain independence resutls involving flipping properties.We follow the notation of the author and Paris in [3] and [2], and assume some knowledge of [3]. M will denote a countable nonstandard model of P (Peano arithmetic) and I will be a proper initial segment of M. We denote by N the standard model or the standard part of M. X ↑ I will mean that X is unbounded in I. If X ⊆ M is coded in M and M ≺ K, let X(K) be the subset of K coded in K by the element which codes X in M. So X(K) ⋂ M = X.Recall that M ≺IK (K is an I-extension of M) if M ≺ K and for some c∈K,In [3] regular and strong initial segments are defined, and among other things it is shown that I is regular if and only if there exists an I-extension of M.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 433 ◽  
Author(s):  
Yuri Bonder ◽  
Cristóbal Corral

It is well known that a theory with explicit Lorentz violation is not invariant under diffeomorphisms. On the other hand, for geometrical theories of gravity, there are alternative transformations, which can be best defined within the first-order formalism and that can be regarded as a set of improved diffeomorphisms. These symmetries are known as local translations, and among other features, they are Lorentz covariant off shell. It is thus interesting to study if theories with explicit Lorentz violation are invariant under local translations. In this work, an example of such a theory, known as the minimal gravity sector of the Standard Model Extension, is analyzed. Using a robust algorithm, it is shown that local translations are not a symmetry of the theory. It remains to be seen if local translations are spontaneously broken under spontaneous Lorentz violation, which are regarded as a more natural alternative when spacetime is dynamic.


2018 ◽  
Vol 33 (31) ◽  
pp. 1844019
Author(s):  
Jisuke Kubo

We consider two realistic models for a scale invariant extension of the standard model, which couples with a hidden non-Abelian gauge sector. At energies around TeV, the hidden sector becomes strongly interacting, thereby generating a robust energy scale, which is transferred to the standard model sector, triggering the electroweak symmetry breaking. At a finite temperature, i.e. in the early Universe, the generation of the robust energy scale appears as a strong first-order phase transition. We calculate the gravitational wave background spectrum for both models, which is produced by the first-order phase transition. We compare the results with the experimental sensitivity of LISA and DECIGO and find the gravitational wave signal may be detected at DECIGO.


1979 ◽  
Vol 44 (1) ◽  
pp. 33-35 ◽  
Author(s):  
George Boolos

This paper compares the strength of two sorts of sentences of PA (classical first-order arithmetic with induction): reflection principles and sentences that may be called iterated consistency assertions.Let Bew(x) be the standard provability predicate for PA, and for any sentence S of PA, let ⌈S⌉ be the numeral for the Gödel number of S. The reflection principle for S is the sentence Bew(⌈S⌉) → S, and a reflection principle is simply the reflection principle for some sentence. Nothing false (in the standard model for PA) is provable in PA, and therefore every reflection principle is true. Löb's theorem asserts that S is provable (in PA) if the reflection principle for S is provable.We shall suppose that the 0-ary propositional connectives ⊤ and ⊥ are taken as primitives in the formulation of PA. We define the iterated consistency assertions Conm by: Con0 = ⊤; Conm−1 = − Bew(⌈ − Conm⌉). Con1 may be taken to be the sentence of PA that expresses the consistency of PA; Conn−1, the sentence that expresses the consistency of PA ⋃ {Conn}.Our starting point is the observation that Con1 is equivalent (in PA) to the reflection principle for ⊥. (The second incompleteness theorem thus follows in a well-known way from Löb's theorem: if PA is consistent, then ⊥ is not provable, the reflection principle for ⊥ is not provable, and the consistency of PA is not provable either.)


Sign in / Sign up

Export Citation Format

Share Document