Successors of singular cardinals and measurability revisited

1990 ◽  
Vol 55 (2) ◽  
pp. 492-501 ◽  
Author(s):  
Arthur W. Apter

Before the remarkable theorem of Martin and Steel [6] showing that the existence of a supercompact cardinal κ implies L[R] ⊨ ZF + AD + DC, and the later theorem of Woodin [9] showing that Con(ZFC + There exists an ω sequence of Woodin cardinals) ⇔ Con(ZF + AD + DC), much set-theoretic research was focused upon showing that the consistency of fragments of AD + DC followed from more “reasonable” hypotheses such as versions of supercompactness. A good example of this is provided by the results of [1], in which the following theorems are proven.


2021 ◽  
Vol 27 (2) ◽  
pp. 221-222
Author(s):  
Alejandro Poveda

AbstractThe dissertation under comment is a contribution to the area of Set Theory concerned with the interactions between the method of Forcing and the so-called Large Cardinal axioms.The dissertation is divided into two thematic blocks. In Block I we analyze the large-cardinal hierarchy between the first supercompact cardinal and Vopěnka’s Principle (Part I). In turn, Block II is devoted to the investigation of some problems arising from Singular Cardinal Combinatorics (Part II and Part III).We commence Part I by investigating the Identity Crisis phenomenon in the region comprised between the first supercompact cardinal and Vopěnka’s Principle. As a result, we generalize Magidor’s classical theorems [2] to this higher region of the large-cardinal hierarchy. Also, our analysis allows to settle all the questions that were left open in [1]. Finally, we conclude Part I by presenting a general theory of preservation of $C^{(n)}$ -extendible cardinals under class forcing iterations. From this analysis we derive several applications. For instance, our arguments are used to show that an extendible cardinal is consistent with “ $(\lambda ^{+\omega })^{\mathrm {HOD}}<\lambda ^+$ , for every regular cardinal $\lambda $ .” In particular, if Woodin’s HOD Conjecture holds, and therefore it is provable in ZFC + “There exists an extendible cardinal” that above the first extendible cardinal every singular cardinal $\lambda $ is singular in HOD and $(\lambda ^+)^{\textrm {{HOD}}}=\lambda ^+$ , there may still be no agreement at all between V and HOD about successors of regular cardinals.In Part II and Part III we analyse the relationship between the Singular Cardinal Hypothesis (SCH) with other relevant combinatorial principles at the level of successors of singular cardinals. Two of these are the Tree Property and the Reflection of Stationary sets, which are central in Infinite Combinatorics.Specifically, Part II is devoted to prove the consistency of the Tree Property at both $\kappa ^+$ and $\kappa ^{++}$ , whenever $\kappa $ is a strong limit singular cardinal witnessing an arbitrary failure of the SCH. This generalizes the main result of [3] in two senses: it allows arbitrary cofinalities for $\kappa $ and arbitrary failures for the SCH.In the last part of the dissertation (Part III) we introduce the notion of $\Sigma $ -Prikry forcing. This new concept allows an abstract and uniform approach to the theory of Prikry-type forcings and encompasses several classical examples of Prikry-type forcing notions, such as the classical Prikry forcing, the Gitik-Sharon poset, or the Extender Based Prikry forcing, among many others.Our motivation in this part of the dissertation is to prove an iteration theorem at the level of the successor of a singular cardinal. Specifically, we aim for a theorem asserting that every $\kappa ^{++}$ -length iteration with support of size $\leq \kappa $ has the $\kappa ^{++}$ -cc, provided the iterates belong to a relevant class of $\kappa ^{++}$ -cc forcings. While there are a myriad of works on this vein for regular cardinals, this contrasts with the dearth of investigations in the parallel context of singular cardinals. Our main contribution is the proof that such a result is available whenever the class of forcings under consideration is the family of $\Sigma $ -Prikry forcings. Finally, and as an application, we prove that it is consistent—modulo large cardinals—the existence of a strong limit cardinal $\kappa $ with countable cofinality such that $\mathrm {SCH}_\kappa $ fails and every finite family of stationary subsets of $\kappa ^+$ reflects simultaneously.



2011 ◽  
Vol 11 (01) ◽  
pp. 87-113 ◽  
Author(s):  
MENACHEM MAGIDOR ◽  
JOUKO VÄÄNÄNEN

We show that, assuming the consistency of a supercompact cardinal, the first (weakly) inaccessible cardinal can satisfy a strong form of a Löwenheim–Skolem–Tarski theorem for the equicardinality logic L(I), a logic introduced in [5] strictly between first order logic and second order logic. On the other hand we show that in the light of present day inner model technology, nothing short of a supercompact cardinal suffices for this result. In particular, we show that the Löwenheim–Skolem–Tarski theorem for the equicardinality logic at κ implies the Singular Cardinals Hypothesis above κ as well as Projective Determinacy.



2008 ◽  
Vol 73 (2) ◽  
pp. 369-390 ◽  
Author(s):  
J. R. Steel

In this note we shall proveTheorem 0.1. Letbe a countably ω-iterable-mouse which satisfies AD, and [α, β] a weak gap of. Supposeis captured by mice with iteration strategies in ∣α. Let n be least such that ; then we have that believes that has the Scale Property.This complements the work of [5] on the construction of scales of minimal complexity on sets of reals in K(ℝ). Theorem 0.1 was proved there under the stronger hypothesis that all sets definable over are determined, although without the capturing hypothesis. (See [5, Theorem 4.14].) Unfortunately, this is more determinacy than would be available as an induction hypothesis in a core model induction. The capturing hypothesis, on the other hand, is available in such a situation. Since core model inductions are one of the principal applications of the construction of optimal scales, it is important to prove 0.1 as stated.Our proof will incorporate a number of ideas due to Woodin which figure prominently in the weak gap case of the core model induction. It relies also on the connection between scales and iteration strategies with the Dodd-Jensen property first discovered in [3]. Let be the pointclass at the beginning of the weak gap referred to in 0.1. In section 1, we use Woodin's ideas to construct a Γ-full a mouse having ω Woodin cardinals cofinal in its ordinals, together with an iteration strategy Σ which condenses well in the sense of [4, Def. 1.13]. In section 2, we construct the desired scale from and Σ.





1999 ◽  
Vol 64 (4) ◽  
pp. 1675-1688
Author(s):  
Arthur W. Apter

AbstractWe extend earlier work (both individual and joint with Shelah) and prove three theorems about the class of measurable limits of compact cardinals, where a compact cardinal is one which is either strongly compact or supercompact. In particular, we construct two models in which every measurable limit of compact cardinals below the least supercompact limit of supercompact cardinals possesses non-trivial degrees of supercompactness. In one of these models, every measurable limit of compact cardinals is a limit of supercompact cardinals and also a limit of strongly compact cardinals having no non-trivial degree of supercompactness. We also show that it is consistent for the least supercompact cardinal κ to be a limit of strongly compact cardinals and be so that every measurable limit of compact cardinals below κ has a non-trivial degree of supercompactness. In this model, the only compact cardinals below κ with a non-trivial degree of supercompactness are the measurable limits of compact cardinals.



1995 ◽  
Vol 60 (1) ◽  
pp. 36-57
Author(s):  
Saharon Shelah ◽  
Lee J. Stanley

AbstractWe lay the combinatorial foundations for [5] by setting up and proving the essential properties of the coding apparatus for singular cardinals. We also prove another result concerning the coding apparatus for inaccessible cardinals.



2017 ◽  
Vol 17 (02) ◽  
pp. 1750007 ◽  
Author(s):  
Omer Ben-Neria ◽  
Spencer Unger

We present a new technique for changing the cofinality of large cardinals using homogeneous forcing. As an application we show that many singular cardinals in [Formula: see text] can be measurable in HOD. We also answer a related question of Cummings, Friedman and Golshani by producing a model in which every regular uncountable cardinal [Formula: see text] in [Formula: see text] is [Formula: see text]-supercompact in HOD.



1985 ◽  
Vol 50 (2) ◽  
pp. 531-543 ◽  
Author(s):  
Arthur W. Apter

A very fruitful line of research in recent years has been the application of techniques in large cardinals and forcing to the production of models in which certain consequences of the axiom of determinateness (AD) are true or in which certain “AD-like” consequences are true. Numerous results have been published on this subject, among them the papers of Bull and Kleinberg [4], Bull [3], Woodin [15], Mitchell [11], and [1], [2].Another such model will be constructed in this paper. Specifically, the following theorem is proven.Theorem 1. Con(ZFC + There are cardinals κ < δ < λ so that κ is a supercompact limit of supercompact cardinals, λ is a measurable cardinal, and δ is λ supercompact) ⇒ Con(ZF + ℵ1 and ℵ2 are Ramsey cardinals + The ℵn for 3 ≤ n ≤ ω are singular cardinals of cofinality ω each of which carries a Rowbottom filter + ℵω + 1 is a Ramsey cardinal + ℵω + 2 is a measurable cardinal).It is well known that under AD + DC, ℵ2 and ℵ2 are measurable cardinals, the ℵn for 3 ≤ n < ω are singular Jonsson cardinals of cofinality ℵ2, ℵω is a Rowbottom cardinal, and ℵω + 1 and ℵω + 2 are measurable cardinals.The proof of the above theorem will use the existence of normal ultrafilters which satisfy a certain property (*) (to be defined later) and an automorphism argument which draws upon the techniques developed in [9], [2], and [4] but which shows in addition that certain supercompact Prikry partial orderings are in a strong sense “homogeneous”. Before beginning the proof of the theorem, however, we briefly mention some preliminaries.



2013 ◽  
Vol 78 (1) ◽  
pp. 17-38 ◽  
Author(s):  
Todd Eisworth

AbstractWe formulate and prove (in ZFC) a strong coloring theorem which holds at successors of singular cardinals, and use it to answer several questions concerning Shelah's principle Pr1(μ+,μ+,μ+, cf (μ)) for singularμ.



2014 ◽  
Vol 79 (01) ◽  
pp. 193-207 ◽  
Author(s):  
LAURA FONTANELLA

Abstract An inaccessible cardinal is strongly compact if, and only if, it satisfies the strong tree property. We prove that if there is a model of ZFC with infinitely many supercompact cardinals, then there is a model of ZFC where ${\aleph _{\omega + 1}}$ has the strong tree property. Moreover, we prove that every successor of a singular limit of strongly compact cardinals has the strong tree property.



Sign in / Sign up

Export Citation Format

Share Document