Combinatorics on large cardinals

1992 ◽  
Vol 57 (2) ◽  
pp. 617-643 ◽  
Author(s):  
Carlos H. Montenegro E.

Our framework is ZFC, and we view cardinals as initial ordinals. Baumgartner ([Bal] and [Ba2]) studied properties of large cardinals by considering these properties as properties of normal ideals and not as properties of cardinals alone. In this paper we study these combinatorial properties by defining operations which take as input one or more ideals and give as output an ideal associated with a large cardinal property. We consider four operations T, P, S and C on ideals of a regular cardinal κ, and study the structure of the collection of subsets they give, and the relationships between them.The operation T is defined using combinatorial properties based on trees 〈X, <T〉 on subsets X ⊆ κ (where α <T β → α < β). Given an ideal I, consider the property *: “every tree on κ with every branching set in I has a branch of size κ” (where a branching set is a maximal set with the same set of <T-predecessors, and a chain is a maximal <T-linearly ordered set; for definitions see §2). Now consider the collection T(I) of all subsets of κ that do not satisfy * (see Definition 2.2 and the introduction to §5). The operation T provides us with the large cardinal property (whether κ ∈ T(I) or not) and it also provides us with the ideal associated with this large cardinal property (namely T(I)); in general, we obtain different notions depending on the ideal I.

1980 ◽  
Vol 45 (1) ◽  
pp. 1-8 ◽  
Author(s):  
T. Jech ◽  
M. Magidor ◽  
W. Mitchell ◽  
K. Prikry

The properties of small cardinals such as ℵ1 tend to be much more complex than those of large cardinals, so that properties of ℵ1 may often be better understood by viewing them as large cardinal properties. In this paper we show that the existence of a precipitous ideal on ℵ1 is essentially the same as measurability.If I is an ideal on P(κ) then R(I) is the notion of forcing whose conditions are sets x ∈ P(κ)/I, with x ≤ x′ if x ⊆ x′. Thus a set D R(I)-generic over the ground model V is an ultrafilter on P(κ) ⋂ V extending the filter dual to I. The ideal I is said to be precipitous if κ ⊨R(I)(Vκ/D is wellfounded).One example of a precipitous ideal is the ideal dual to a κ-complete ultrafilter U on κ. This example is trivial since the generic ultrafilter D is equal to U and is already in the ground model. A generic set may be viewed as one that can be worked with in the ground model even though it is not actually in the ground model, so we might expect that cardinals such as ℵ1 that cannot be measurable still might have precipitous ideals, and such ideals might correspond closely to measures.


2009 ◽  
Vol 74 (3) ◽  
pp. 1015-1046 ◽  
Author(s):  
Gunter Fuchs

AbstractThe motivation for this paper is the following: In [4] I showed that it is inconsistent with ZFC that the Maximality Principle for directed closed forcings holds at unboundedly many regular cardinals κ (even only allowing κ itself as a parameter in the Maximality Principle for <κ-closed forcings each time). So the question is whether it is consistent to have this principle at unboundedly many regular cardinals or at every regular cardinal below some large cardinal κ (instead of ∞), and if so, how strong it is. It turns out that it is consistent in many cases, but the consistency strength is quite high.


1978 ◽  
Vol 21 (3) ◽  
pp. 363-364
Author(s):  
Isidore Fleischer

Let us say that an order embedding of an uncountable regular cardinal in a linearly ordered set is continuous if it preserves the suprema (for all smaller limit ordinals). This makes the embedding a homeomorphism for the two order topologies; and if the image has no supremum, it is a closed subspace. Since uncountable regular cardinals fail to be paracompact, a linearly ordered set can be paracompact only if it admits no such embedding or anti-embedding. Conversely, Gillman and Henriksen have shown that this suffices (Trans. A.M.S. 77 (1954) pp. 352 ff).


1994 ◽  
Vol 59 (3) ◽  
pp. 1055-1067 ◽  
Author(s):  
Yasuo Kanai

In this paper, we generalize the notion of distributivity and consider some properties of distributive ideals, that is, ideals I such that the algebra P(κ)/I is distributive in our sense.Our notation and terminology is explained in §1, while the main results of this paper begin in §2. We shall show here some relations of the distributivity and the ideal theoretic partitions. In §3, we shall study the class of distributive ideals over κ whose existence is equivalent to the ineffability of κ, and other classes. Finally, in §4, we shall consider the equivalence of the Boolean prime ideal theorem and show that the existence of certain distributive ideals characterizes several large cardinals. As a byproduct, we can give a simple proof of Ketonen's theorem that κ is strongly compact if and only if for any regular cardinal λ ≥ κ there exists a nontrivial κ-complete prime ideal over λ.


1977 ◽  
Vol 23 (1) ◽  
pp. 1-8 ◽  
Author(s):  
C. J. Ash

AbstractA chain, or linearly ordered set, is densely subuniform if it is dense and for every order type the elements whose corresponding initial sections have this order type, if any, are dense in the chain. It is uniform if all intial sections are isomorphic. This paper gives constructions for densely subuniform chains which are not uniform. The question arises from the study of congruence-free inverse semigroups, but may also have independent interest.


1995 ◽  
Vol 38 (2) ◽  
pp. 223-229
Author(s):  
John Lindsay Orr

AbstractA linearly ordered set A is said to shuffle into another linearly ordered set B if there is an order preserving surjection A —> B such that the preimage of each member of a cofinite subset of B has an arbitrary pre-defined finite cardinality. We show that every countable linearly ordered set shuffles into itself. This leads to consequences on transformations of subsets of the real numbers by order preserving maps.


1991 ◽  
Vol 56 (1) ◽  
pp. 103-107
Author(s):  
Maxim R. Burke

AbstractWe investigate the cofinality of the partial order κ of functions from a regular cardinal κ into the ideal of Lebesgue measure zero subsets of R. We show that when add () = κ and the covering lemma holds with respect to an inner model of GCH, then cf (κ) = max{cf(κκ), cf([cf()]κ)}. We also give an example to show that the covering assumption cannot be removed.


2021 ◽  
Vol 27 (2) ◽  
pp. 221-222
Author(s):  
Alejandro Poveda

AbstractThe dissertation under comment is a contribution to the area of Set Theory concerned with the interactions between the method of Forcing and the so-called Large Cardinal axioms.The dissertation is divided into two thematic blocks. In Block I we analyze the large-cardinal hierarchy between the first supercompact cardinal and Vopěnka’s Principle (Part I). In turn, Block II is devoted to the investigation of some problems arising from Singular Cardinal Combinatorics (Part II and Part III).We commence Part I by investigating the Identity Crisis phenomenon in the region comprised between the first supercompact cardinal and Vopěnka’s Principle. As a result, we generalize Magidor’s classical theorems [2] to this higher region of the large-cardinal hierarchy. Also, our analysis allows to settle all the questions that were left open in [1]. Finally, we conclude Part I by presenting a general theory of preservation of $C^{(n)}$ -extendible cardinals under class forcing iterations. From this analysis we derive several applications. For instance, our arguments are used to show that an extendible cardinal is consistent with “ $(\lambda ^{+\omega })^{\mathrm {HOD}}<\lambda ^+$ , for every regular cardinal $\lambda $ .” In particular, if Woodin’s HOD Conjecture holds, and therefore it is provable in ZFC + “There exists an extendible cardinal” that above the first extendible cardinal every singular cardinal $\lambda $ is singular in HOD and $(\lambda ^+)^{\textrm {{HOD}}}=\lambda ^+$ , there may still be no agreement at all between V and HOD about successors of regular cardinals.In Part II and Part III we analyse the relationship between the Singular Cardinal Hypothesis (SCH) with other relevant combinatorial principles at the level of successors of singular cardinals. Two of these are the Tree Property and the Reflection of Stationary sets, which are central in Infinite Combinatorics.Specifically, Part II is devoted to prove the consistency of the Tree Property at both $\kappa ^+$ and $\kappa ^{++}$ , whenever $\kappa $ is a strong limit singular cardinal witnessing an arbitrary failure of the SCH. This generalizes the main result of [3] in two senses: it allows arbitrary cofinalities for $\kappa $ and arbitrary failures for the SCH.In the last part of the dissertation (Part III) we introduce the notion of $\Sigma $ -Prikry forcing. This new concept allows an abstract and uniform approach to the theory of Prikry-type forcings and encompasses several classical examples of Prikry-type forcing notions, such as the classical Prikry forcing, the Gitik-Sharon poset, or the Extender Based Prikry forcing, among many others.Our motivation in this part of the dissertation is to prove an iteration theorem at the level of the successor of a singular cardinal. Specifically, we aim for a theorem asserting that every $\kappa ^{++}$ -length iteration with support of size $\leq \kappa $ has the $\kappa ^{++}$ -cc, provided the iterates belong to a relevant class of $\kappa ^{++}$ -cc forcings. While there are a myriad of works on this vein for regular cardinals, this contrasts with the dearth of investigations in the parallel context of singular cardinals. Our main contribution is the proof that such a result is available whenever the class of forcings under consideration is the family of $\Sigma $ -Prikry forcings. Finally, and as an application, we prove that it is consistent—modulo large cardinals—the existence of a strong limit cardinal $\kappa $ with countable cofinality such that $\mathrm {SCH}_\kappa $ fails and every finite family of stationary subsets of $\kappa ^+$ reflects simultaneously.


2014 ◽  
Vol 79 (4) ◽  
pp. 1092-1119 ◽  
Author(s):  
WILL BONEY

AbstractWe show that Shelah’s Eventual Categoricity Conjecture for successors follows from the existence of class many strongly compact cardinals. This is the first time the consistency of this conjecture has been proven. We do so by showing that every AEC withLS(K) below a strongly compact cardinalκis <κ-tame and applying the categoricity transfer of Grossberg and VanDieren [11]. These techniques also apply to measurable and weakly compact cardinals and we prove similar tameness results under those hypotheses. We isolate a dual property to tameness, calledtype shortness, and show that it follows similarly from large cardinals.


2011 ◽  
Vol 76 (2) ◽  
pp. 519-540 ◽  
Author(s):  
Victoria Gitman

AbstractOne of the numerous characterizations of a Ramsey cardinal κ involves the existence of certain types of elementary embeddings for transitive sets of size κ satisfying a large fragment of ZFC. We introduce new large cardinal axioms generalizing the Ramsey elementary embeddings characterization and show that they form a natural hierarchy between weakly compact cardinals and measurable cardinals. These new axioms serve to further our knowledge about the elementary embedding properties of smaller large cardinals, in particular those still consistent with V = L.


Sign in / Sign up

Export Citation Format

Share Document